Cortical information processing originates from the exchange of action potentials between many cell types. To capture the essence of these interactions, it is of critical importance to build mathematical models that reflect the characteristic features of spike generation in individual neurons. We propose a framework to automatically extract such features from current-clamp experiments, in particular the passive properties of a neuron (i.e., membrane time constant, reversal potential, and capacitance), the spike-triggered adaptation currents, as well as the dynamics of the action potential threshold. The stochastic model that results from our maximum likelihood approach accurately predicts the spike times, the subthreshold voltage, the firing patterns, and the type of frequency-current curve. Extracting the model parameters for three cortical cell types revealed that cell types show highly significant differences in the time course of the spike-triggered currents and moving threshold, that is, in their adaptation and refractory properties but not in their passive properties. In particular, GABAergic fast-spiking neurons mediate weak adaptation through spike-triggered currents only, whereas regular spiking excitatory neurons mediate adaptation with both moving threshold and spike-triggered currents. GABAergic nonfast-spiking neurons combine the two distinct adaptation mechanisms with reduced strength. Differences between cell types are large enough to enable automatic classification of neurons into three different classes. Parameter extraction is performed for individual neurons so that we find not only the mean parameter values for each neuron type but also the spread of parameters within a group of neurons, which will be useful for future large-scale computer simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00408.2011 | DOI Listing |
Neoplasia
January 2025
Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA.
Background: Cancer stem cells in human tumors have been defined by stem cell markers, embryonal signaling pathways and characteristic biology, ie., namely the ability to repopulate the proliferating population. However, even if these properties can be demonstrated within a tumor cell subpopulation, it does not mean that they are truly hierarchical stem cells because they could have been derived from the proliferating population in a reversible manner.
View Article and Find Full Text PDFCancer Treat Rev
January 2025
Gastrointestinal Unit, Department of Medicine, Royal Marsden Hospital, London and Surrey, UK. Electronic address:
Claudins (CLDNs) play a crucial and indispensable role as fundamental components within the structure of tight junctions. Due to the distinct and unique distribution pattern exhibited by CLDNs in both normal and malignant tissues, these proteins have garnered significant attention as pivotal targets for systemic anti-cancer therapy and as noteworthy diagnostic markers. This review provides a comprehensive and detailed elucidation of the fundamental understanding surrounding CLDNs, their intricate expression patterns, the potential role they play in cancer diagnosis and therapeutic potentials; all encapsulated within a succinct summary of the cutting-edge advancements and the information derived from various clinical trials.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:
A micro-nano sharkskin like film (Cu-MNS-FA) was synthesized on copper surface through chemical etching followed by formate passivation, and its anticorrosive, antibacterial and thermal conductivity properties were investigated. Results show that after 7 d of exposure to nature, Pseudomonas aeruginosa and Desulfovibrio vulgaris seawater, the charge transfer resistance of Cu-MNS-FA is more than three times higher than that of unmodified copper. In particular, in D.
View Article and Find Full Text PDFNanotechnology
January 2025
Department of Biotechnology, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, School of Bio, Chemical & Process Enginneering, Krishnankoil, Krishnan Kovil, Tamil Nadu, 626126, INDIA.
Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect.
View Article and Find Full Text PDFACS Nano
January 2025
Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
Antidrug antibodies (ADAs) against biologics present a major challenge for sustained biotherapy, including enzyme replacement therapies and adeno-associated virus (AAV) gene therapies. These antibodies arise from undesirable immune responses, leading to altered pharmacokinetics, reduced efficacy, and adverse reactions. In this study, we introduced a rationally designed lipid-rapamycin (Rapa)-based nanovaccine to restore immune tolerance to biologics and overcome drug resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!