Mechanism of exacerbative effect of progesterone on drug-induced liver injury.

Toxicol Sci

Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

Published: March 2012

AI Article Synopsis

  • Drug-induced liver injury (DILI) is a significant issue in drug development, with female mice showing worse outcomes, particularly influenced by hormones like progesterone.
  • Research indicates that progesterone worsens liver injury in female mice by increasing immune cell infiltration and inflammatory mediator levels through the activation of the ERK pathway and Kupffer cells.
  • Targeting progesterone receptors and reducing immune responses may offer new therapeutic strategies to manage DILI in females.

Article Abstract

Drug-induced liver injury (DILI) is a major safety concern in drug development and clinical drug therapy. However, the underlying mechanism of DILI is little known. It is generally believed that women exhibit worse outcomes from DILI than men. Recently, we found that pretreatment of mice with estradiol attenuated halothane (HAL)-induced liver injury, whereas pretreatment with progesterone exacerbated it in female mice. To investigate the mechanism of sex difference of DILI, we focused on progesterone in this study. We found the exacerbating effect of progesterone in thioacetamide (TA), α-naphthylisothiocyanate, and dicloxacillin-induced liver injury only in female mice. Higher number of myeloperoxidase-positive mononuclear cells infiltrated into the liver and increased levels of Chemokine (C-X-C motif) ligand 1 and 2 (CXCL1 and CXCL2) and intercellular adhesion molecule-1 in the liver were observed. Interestingly, CXCL1 was slightly increased by progesterone pretreatment alone. Progesterone pretreatment increased the extracellular signal-regulated kinase (ERK) phosphorylation in HAL-induced liver injury. Pretreatment with U0126 (ERK inhibitor) significantly suppressed the exacerbating effect of progesterone and the expression of inflammatory mediators. In addition, pretreatment with gadolinium chloride (GdCl(3): inhibitor of Kupffer cells) significantly suppressed the exacerbating effect of progesterone pretreatment and the expression of inflammatory mediators. Moreover, posttreatment of RU486 (progesterone receptor antagonist) 1 h after the HAL or TA administration ameliorated the HAL- or TA-induced liver injury, respectively, in female mice. In conclusion, progesterone exacerbated the immune-mediated hepatotoxic responses in DILI via Kupffer cells and ERK pathway. The inhibition of progesterone receptor and decrease of the immune response may have important therapeutic implications in DILI.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfr326DOI Listing

Publication Analysis

Top Keywords

liver injury
24
female mice
12
exacerbating progesterone
12
progesterone pretreatment
12
progesterone
11
liver
8
drug-induced liver
8
hal-induced liver
8
injury pretreatment
8
pretreatment progesterone
8

Similar Publications

As a serine hydrolase synthesized by the liver, butyrylcholinesterase (BChE) is an important biomarker in the clinical diagnosis of liver diseases. To track BChE activity in drug-induced liver injury, we designed a deep-red BChE-activatable fluorescent probe (CYL-BChE) with hemi-cyanine structure by using a cyclopropyl carbonyl group as a specific recognition moiety. Its near-infrared absorption wavelength (665 nm) and emission wavelength (762 nm) provide excellent tissue penetration capabilities, making it suitable for biological imaging.

View Article and Find Full Text PDF

Farnesol (FAR) is a sesquiterpene alcohol that exists in many fruits and vegetables and possesses promising anti-inflammatory and antioxidant activities. Cadmium (Cd) is an environmental pollutant known for its serious health effects. Liver injury associated with oxidative stress is a hazardous consequence of exposure to Cd.

View Article and Find Full Text PDF

Although herpes simplex virus, Epstein-Barr virus, and hemophagocytic lymphohistiocytosis are known causes of severe acute liver injury with or without liver failure, these diseases occur almost exclusively in immunocompromised and elderly patients. We report a case of an immunocompetent young man with no medical history who presented with a subacute cough and persistent fevers in the setting of a penile chancre. He was found to have severely elevated liver chemistries and was subsequently diagnosed with hemophagocytic lymphohistiocytosis because of disseminated herpes simplex virus type 1 and Epstein-Barr virus coinfection.

View Article and Find Full Text PDF

Purpose: Sepsis-associated liver injury (SALI) leads to increased mortality in sepsis patients, yet no specialized tools exist for early risk assessment. This study aimed to develop and validate a risk prediction model for early identification of SALI before patients meet full diagnostic criteria.

Patients And Methods: This retrospective study analyzed 415 sepsis patients admitted to ICU from January 2019 to January 2022.

View Article and Find Full Text PDF

This study introduced a hydrogel dressing, termed SODex-gel, which was constructed by establishing Schiff base and hydrogen bonds with the precursors of oxidized dextran (ODex) and succinic dihydrazide (SD)-modified sodium alginate (SD--SA). Through comprehensive and studies, the adhesive properties, self-healing capabilities, hemostatic potential, and wound healing efficacy of the SODex-gel dressing were meticulously evaluated. The H NMR, FTIR, and TGA analyses confirmed the fabrication of the SODex-gel dressing and its constituent elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!