The two groups of living monotremes (platypus and echidnas) have remarkably different olfactory structures in the adult. The layers of the main olfactory bulb of the short-beaked echidna are extensively folded, whereas those of the platypus are not. Similarly, the surface area of the piriform cortex of the echidna is large and its lamination complex, whereas in the platypus it is small and simple. It has been argued that the modern echidnas are derived from a platypus-like ancestor, in which case the extensive olfactory specializations of the modern echidnas would have developed relatively recently in monotreme evolution. In this study, the development of the constituent structures of the olfactory pathway was studied in sectioned platypus and echidna embryos and post-hatchlings at the Museum für Naturkunde, Berlin, Germany. The aim was to determine whether the olfactory structures follow a similar maturational path in the two monotremes during embryonic and early post-hatching ages or whether they show very different developmental paths from the outset. The findings indicate that anatomical differences in the central olfactory system between the short-beaked echidna and the platypus begin to develop immediately before hatching, although details of differences in nasal cavity architecture emerge progressively during late post-hatching life. These findings are most consistent with the proposition that the two modern monotreme lineages have followed independent evolutionary paths from a less olfaction-specialized ancestor. The monotreme olfactory pathway does not appear to be sufficiently structurally mature at birth to allow olfaction-mediated behaviour, because central components of both the main and accessory olfactory system have not differentiated at the time of hatching.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000332804 | DOI Listing |
Gigascience
January 2025
Centre for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
Background: A thorough analysis of genome evolution is fundamental for biodiversity understanding. The iconic monotremes (platypus and echidna) feature extraordinary biology. However, they also exhibit rearrangements in several chromosomes, especially in the sex chromosome chain.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
January 2025
Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Biochemistry, Charitéplatz 1, D-10117 Berlin, Germany. Electronic address:
Eicosanoids and related compounds are pleiotropic lipid mediators, which play a role in cell differentiation and in the pathogenesis of various diseases. The biosynthesis of these lipids has extensively been studied in highly developed mammals including humans but little is known about the formation of these mediators in more ancient Prototheria. We searched the genomes of two extant prototherian species (platypus, short-beaked echidna) for genes encoding for lipoxygenase- (ALOX) and prostaglandin synthase-isoforms (PTGS) and detected intact single copy genes for ALOX5, ALOX12, ALOX12B, ALOXE3, PTGS1 and PTGS2.
View Article and Find Full Text PDFOpen Biol
July 2024
School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
The enzymatic breakdown and regulation of food passage through the vertebrate antral stomach and pyloric sphincter (antropyloric region) is a trait conserved over 450 million years. Development of the structures involved is underpinned by a highly conserved signalling pathway involving the hedgehog, bone morphogenetic protein and Wingless/Int-1 (Wnt) protein families. Monotremes are one of the few vertebrate lineages where acid-based digestion has been lost, and this is consistent with the lack of genes for hydrochloric acid secretion and gastric enzymes in the genomes of the platypus () and short-beaked echidna () .
View Article and Find Full Text PDFTissue Cell
June 2024
Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Italy. Electronic address:
The soft epidermis of mammals derives from the accumulation of keratohyaline granules in the granular layer, before maturing into corneocytes. Main proteins accumulated in the granular layer are pro-filaggrin and filaggrin that determine keratin clumping and later moisturization of the stratum corneum that remains flexible. This soft epidermis allows the high sensitivity of mammalian skin.
View Article and Find Full Text PDFCommun Biol
April 2024
Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan.
The regressive evolution of independent lineages often results in convergent phenotypes. Several teleost groups display secondary loss of the stomach, and four gastric genes, atp4a, atp4b, pgc, and pga2 have been co-deleted in agastric (stomachless) fish. Analyses of genotypic convergence among agastric fishes showed that four genes, slc26a9, kcne2, cldn18a, and vsig1, were co-deleted or pseudogenized in most agastric fishes of the four major groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!