Influence of the pathogenic mutations T188K/R/A on the structural stability and misfolding of human prion protein: insight from molecular dynamics simulations.

Biochim Biophys Acta

State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China.

Published: February 2012

Background: Prion diseases are associated with a conformational switch for PrP from PrP(C) to PrP(Sc). Many genetic mutations are linked with prion diseases, such as mutations T188K/R/A with fCJD.

Scope Of Review: MD simulations for the WT PrP and its mutants were performed to explore the underlying dynamic effects of T188 mutations on human PrP. Although the globular domains are fairly conserved, the three mutations have diverse effects on the dynamics properties of PrP, including the shift of H1, the elongation of native β-sheet and the conversion of S2-H2 loop to a 3(10) helix.

Major Conclusions: Our present study indicates that the three mutants for PrP may undergo different pathogenic mechanisms and the realistic atomistic simulations can provide insights into the effects of disease-associated mutations on PrP dynamics and stability, which can enhance our understanding of how mutations induce the conversion from PrP(C) to PrP(Sc). General significance Our present study helps to understand the effects of T188K/R/A mutations on human PrP: despite the three pathogenic mutations almost do not alter the native structure of PrP, but perturb its stability. This instability may further modulate the oligomerization pathways and determine the features of the PrP(Sc) assemblies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2011.11.013DOI Listing

Publication Analysis

Top Keywords

mutations
9
pathogenic mutations
8
mutations t188k/r/a
8
prion diseases
8
prp
8
prpc prpsc
8
mutations human
8
human prp
8
influence pathogenic
4
t188k/r/a structural
4

Similar Publications

A divergent two-domain structure of the anti-Müllerian hormone prodomain.

Proc Natl Acad Sci U S A

January 2025

Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267.

TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent.

View Article and Find Full Text PDF

Molecular Determinants of Protein Pathogenicity at the Single-Aggregate Level.

Adv Sci (Weinh)

January 2025

Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.

Determining the structure-function relationships of protein aggregates is a fundamental challenge in biology. These aggregates, whether formed in vitro, within cells, or in living organisms, present significant heterogeneity in their molecular features such as size, structure, and composition, making it difficult to determine how their structure influences their functions. Interpreting how these molecular features translate into functional roles is crucial for understanding cellular homeostasis and the pathogenesis of various debilitating diseases like Alzheimer's and Parkinson's.

View Article and Find Full Text PDF

As part of an ongoing effort to generate comprehensive resources for the experimental analysis of fourth chromosome genes in Drosophila melanogaster, the Fourth Chromosome Resource Project has used CRISPR mutagenesis with single guide RNAs to isolate mutations in 62 of the 80 fourth chromosome, protein-coding genes. These mutations were induced on a fourth chromosome bearing a basal FRT insertion to facilitate experimental approaches involving FLP recombinase-induced mitotic recombination. To permit straightforward comparisons among mutant stocks, most of the mutations were generated on isogenic fourth chromosomes, which were then crossed into a common genetic background.

View Article and Find Full Text PDF

Background: The determinants of differences in host infectivity among Cryptosporidium species and subtypes are poorly understood. Results from recent comparative genomic studies suggest that gains and losses of multicopy subtelomeric genes encoding insulinase-like proteases (INS-19 and INS-20 in Cryptosporidium parvum and their orthologs in closely related species) may potentially contribute to these differences.

Methodology/principal Findings: In this study, we investigated the expression and biological function of the INS-19 and INS-20 of C.

View Article and Find Full Text PDF

Placental malaria is characterized by the massive accumulation and sequestration of infected erythrocytes in the placental intervillous blood spaces, causing severe birth outcomes. The variant surface antigen VAR2CSA is associated with Plasmodium falciparum sequestration in the placenta via its capacity to adhere to chondroitin sulfate A. We have previously shown that the extracellular region of VAR2CSA is phosphorylated on several residues and that the phosphorylation enhances the adhesive properties of CSA-binding infected erythrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!