β-Lactamase inhibitors (clavulanic acid, sulbactam, and tazobactam) contribute significantly to the longevity of the β-lactam antibiotics used to treat serious infections. In the quest to design more potent compounds and to understand the mechanism of action of known inhibitors, 6β-(hydroxymethyl)penicillanic acid sulfone (6β-HM-sulfone) was tested against isolates expressing the class A TEM-1 β-lactamase and a clinically important variant of the AmpC cephalosporinase of Pseudomonas aeruginosa, PDC-3. The addition of the 6β-HM-sulfone inhibitor to ampicillin was highly effective. 6β-HM-sulfone inhibited TEM-1 with an IC(50) of 12 ± 2 nM and PDC-3 with an IC(50) of 180 ± 36 nM, and displayed lower partition ratios than commercial inhibitors, with partition ratios (k(cat)/k(inact)) equal to 174 for TEM-1 and 4 for PDC-3. Measured for 20 h, 6β-HM-sulfone demonstrated rapid, first-order inactivation kinetics with the extent of inactivation being related to the concentration of inhibitor for both TEM-1 and PDC-3. Using mass spectrometry to gain insight into the intermediates of inactivation of this inhibitor, 6β-HM-sulfone was found to form a major adduct of +247 ± 5 Da with TEM-1 and +245 ± 5 Da with PDC-3, suggesting that the covalently bound, hydrolytically stabilized acyl-enzyme has lost a molecule of water (HOH). Minor adducts of +88 ± 5 Da with TEM-1 and +85 ± 5 Da with PDC-3 revealed that fragmentation of the covalent adduct can result but appeared to occur slowly with both enzymes. 6β-HM-sulfone is an effective and versatile β-lactamase inhibitor of representative class A and C enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319978 | PMC |
http://dx.doi.org/10.1016/j.bcp.2011.11.015 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China.
Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.
View Article and Find Full Text PDFCurr Protein Pept Sci
January 2025
Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad (MNNITA), Allahabad, India.
The diagnosis of intestinal injury remains a challenge as it is rare in occurrence and transpires in multiple traumatized patients. The deferred finding of injury of intestines upsurges multiple risks such as septicemia, numerous organ failures as well as mortality. In this review, we corroborate with the goals of proposing surrogate biomarkers that consent to the measurement of the permeability of intestines more effortlessly.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Nonalcoholic fatty liver disease (NAFLD) is one of the main causes of chronic liver disorders following liver transplantation. The prorenin receptor (PRR) plays a role in glucose and lipid metabolism, and the hepatic dysregulation of PRR is associated with the upregulation of several molecular pathways, such as the mammalian target of rapamycin (mTOR) and Peroxisome proliferator-activated receptor (PPAR) that promotes hepatic lipogenesis and leads to lipid accumulation in hepatocytes by upregulation of lipogenic genes. PRR inhibition leads to a reduction in the hepatic expression of sortilin-1 and low-density lipoprotein receptor (LDLR) levels and down-regulation of pyruvate dehydrogenase (PDH) and acetyl-CoA carboxylase (ACC) and reduces fatty acids synthesis in hepatocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!