Bacteria have been found in all niches explored on Earth, their ubiquity derives from their enormous metabolic diversity and their capacity to adapt to changes in the environment. Some bacterial strains are able to thrive in the presence of high concentrations of toxic organic chemicals, such as aromatic compounds, aliphatic alcohols and solvents. The extrusion of these toxic compounds from the cell to the external medium represents the most relevant aspect in the solvent tolerance of bacteria, however, solvent tolerance is a multifactorial process that involves a wide range of genetic and physiological changes to overcome solvent damage. These additional elements include reduced membrane permeabilization, implementation of a stress response programme, and in some cases degradation of the toxic compound. We discuss the recent advances in our understanding of the mechanisms involved in solvent tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2011.11.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!