A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. | LitMetric

Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers.

J Control Release

Departments of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts, USA.

Published: April 2012

Polymer-based drug delivery depots have been investigated over the last several decades as a means to improve upon the lack of tumor targeting and severe systemic morbidities associated with intravenous chemotherapy treatments. These localized therapies exist in a variety of form factors designed to facilitate the delivery of drug directly to the site of disease in a controlled manner, sparing off-target tissue toxicities. Many of these depots are biodegradable and designed to maintain therapeutic concentrations of drug at the tumor site for a prolonged period of time. Thus a single implantation procedure is required, sometimes coincident with tumor excision surgery, and thereby biodegrading following complete release of the loaded active agent. Even though localized polymer depot delivery systems have been investigated, a surprisingly small subset of these technologies has demonstrated potentially curative preclinical results for cancer applications, and fewer have progressed toward commercialization. The aims of this article are to review the most well-studied and efficacious local polymer delivery systems from the last two decades, to examine the rationale for utilizing drug-eluting polymer implants in cancer patients, and to identify the patient cohorts that could most benefit from localized therapy. Finally, a discussion of the physiological barriers to localized therapy (i.e. drug penetration, transport), technical hurdles, and future outlook of the field is presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878823PMC
http://dx.doi.org/10.1016/j.jconrel.2011.11.031DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
delivery systems
8
localized therapy
8
delivery
5
local drug
4
delivery strategies
4
strategies cancer
4
cancer treatment
4
treatment gels
4
gels nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!