Adenosine released during myocardial ischemia mediates cardioprotective preconditioning. Multivalent drugs covalently bound to nanocarriers may differ greatly in chemical and biological properties from the corresponding monomeric agents. Here, we conjugated chemically functionalized nucleosides to poly(amidoamine) (PAMAM) dendrimeric polymers and investigated their effects in rat primary cardiac cell cultures and in the isolated heart. Three conjugates of A₃ adenosine receptor (AR) agonists, chain-functionalized at the C2 or N⁶ position, were cardioprotective, with greater potency than monomeric agonist Cl-IB-MECA. Multivalent amide-linked MRS5216 was selective for A₁ and A₃ARs, and triazole-linked MRS5246 and MRS5539 (optionally containing fluorescent label) were A₃AR-selective. The conjugates protected ischemic rat cardiomyocytes, an effect blocked by an A₃AR antagonist MRS1523, and isolated hearts with significantly improved infarct size, rate of pressure product, and rate of contraction and relaxation. Thus, strategically derivatized nucleosides tethered to biocompatible polymeric carriers display enhanced cardioprotective potency via activation of A₃AR on the cardiomyocyte surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278557 | PMC |
http://dx.doi.org/10.1016/j.phrs.2011.11.013 | DOI Listing |
Adenine nucleotides (ATP, ADP and AMP) play a central role in the regulation of metabolism and energy: they provide the energy balance of the cell, determine its redox state, act as allosteric effectors of a number of enzymes, modulate signaling and transcription factors and activate oxidation or biosynthesis substrates. A large number of methods have been developed to determine the level of ATP, ADP and AMP, but the most universal and effective method for the separation and analysis of complex mixtures is the reversed-phase high-performance liquid chromatography method (RP-HPLC). The aim of this study is to determine the optimal conditions for the qualitative separation and quantitative determination of standard solutions of ATP (1 mmol/l), ADP (0,5 mmol/l) and AMP (0,1 mmol/l) by RP-HPLC.
View Article and Find Full Text PDFBiopolymers
October 2010
Rimstone Laboratory, RLI, 29 Lancaster Way, Cheshire, CT 06410, USA.
Replacement of two to four guanines by adenines in the human telomere DNA repeat dG3(TTAG3)3 did not hinder the formation of quadruplexes if the substitutions took place in the terminal tetrad bridged by the diagonal loop of the intramolecular antiparallel three-tetrad scaffold, as proved by CD and PAGE in both Na+ and K+ solutions. Thermodynamic data showed that, in Na+ solution, the dG3(TTAG3)3 quadruplex was destabilized, the least by the two G:A:G:A tetrads, the most by the G:G:A:A tetrad in which the adenosines replaced syn-guanosines. In physiological K+ solution, the highest destabilization was caused by the 4A tetrad.
View Article and Find Full Text PDFJ Biol Chem
January 2003
Institut für Allgemeine Mikrobiologie, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
Archaea have a eukaryotic type of transcriptional machinery containing homologues of the transcription factors TATA-binding protein (TBP) and TFIIB (TFB) and a pol II type of RNA polymerase, whereas transcriptional regulators identified in archaeal genomes have bacterial counterparts. We describe here a novel regulator of heat shock response, Phr, from the hyperthermophilic archaeon Pyrococcus furiosus that is conserved among Euryarchaeota. The protein specifically inhibited cell-free transcription of its own gene and from promoters of a small heat shock protein, Hsp20, and of an AAA(+) ATPase.
View Article and Find Full Text PDFMol Cell Biol
October 2000
Biotechnology Research Institute, Montreal, Quebec H4P 2R2, Canada.
Cellular stress can trigger a process of self-destruction known as apoptosis. Cells can also respond to stress by adaptive changes that increase their ability to tolerate normally lethal conditions. Expression of the major heat-inducible protein hsp70 protects cells from heat-induced apoptosis.
View Article and Find Full Text PDFThe three RNA trinucleotides; ApApA, ApApG, and ApUpG, have been synthesized in sufficient quantity to obtain natural abundance 13C(1H)-NMR spectra at strand concentrations between 4 and 100 mM. Comparisons between 70 degrees C spectra of the three trimers and their consistuent dimers ApA, ApG, ApU, and UpG allow secure assignments to be made for most of the resonances. This paper describes the syntheses and 13C assignments of the oligomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!