Effect of culture conditions on the competitive interaction between lactate oxidizers and fermenters in a biological sulfate reduction system.

Bioresour Technol

Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Private Bag, Rondebosch 7701, South Africa.

Published: January 2012

Kinetic constants (μ(max) and K(s)) describing the predominance of lactate oxidation and fermentation were determined in chemostat cultures. The kinetics of sulfate reduction and lactate utilization were determined from 0.5 to 5d residence times at feed sulfate concentrations of 1.0-10.0 g l(-1). The kinetics of lactate fermentation in the absence of sulfate were investigated at residence times of 0.5-5d. The lactate oxidizers (LO) were characterized by a μ(max) of 0.2h(-1) and K(s) value of 0.6 g l(-1) compared with a μ(max) of 0.3h(-1) and K(s) of 3.3 g l(-1) for the lactate fermenters (LF). Using mathematical models, it was shown that LO competed more effectively for lactate at low lactate concentrations (≤5 g l(-1)) and high sulfide concentrations (0.5 g l(-1)). Lactate fermenters outcompeted the oxidizers under conditions of excess lactate (>5 g l(-1)) and low sulfide (0.014-0.088 g l(-1)).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2011.11.052DOI Listing

Publication Analysis

Top Keywords

lactate
10
lactate oxidizers
8
sulfate reduction
8
residence times
8
l-1 lactate
8
lactate fermenters
8
l-1
7
culture conditions
4
conditions competitive
4
competitive interaction
4

Similar Publications

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Severe acute pancreatitis (SAP) is one of the leading causes of hospital admissions for gastrointestinal diseases, with a rising incidence worldwide. Intestinal microbiota dysbiosis caused by SAP exacerbates systemic inflammatory response syndrome and organ dysfunction. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic option for gastrointestinal diseases.

View Article and Find Full Text PDF

Machine learning applications in healthcare clinical practice and research.

World J Clin Cases

January 2025

Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece.

Machine learning (ML) is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis, thus creating machines that can complete tasks otherwise requiring human intelligence. Among its various applications, it has proven groundbreaking in healthcare as well, both in clinical practice and research. In this editorial, we succinctly introduce ML applications and present a study, featured in the latest issue of the .

View Article and Find Full Text PDF

Application of the SpCas9 inhibitor BRD0539 for CRISPR/Cas9-based genetic tools in .

Biosci Microbiota Food Health

September 2024

Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

Although the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been extensively developed since its discovery for eukaryotic and prokaryotic genome editing and other genetic manipulations, there are still areas warranting improvement, especially regarding bacteria. In this study, BRD0539, a small-molecule inhibitor of Cas9 (SpCas9), was used to suppress the activity of the nuclease during genetic modification of , as well as to regulate CRISPR interference (CRISPRi). First, we developed and validated a CRISPR-SpCas9 system targeting the gene of .

View Article and Find Full Text PDF

α-Lipoic acid increases phagocytosis of some lactic acid bacteria via modulation of CD36 expression.

Biosci Microbiota Food Health

August 2024

Local Brand R&D, SSP Co., Ltd., Opera City Tower, 3-20-2 Nishi Shinjuku, Shinjuku-ku, Tokyo 163-1488, Japan.

Phagocytosis by immunocompetent cells is a key role in the biological defense mechanism and is the starting point of the reaction that leads from innate to acquired immunity. Several studies have demonstrated that some lactic acid bacteria strains activate the innate and acquired immune systems of the host. However, further investigation of the mechanism and improvement of usefulness is needed because the effect differs depending on the type and strain of lactic acid bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!