The discovery and characterization of two new chemical classes of potent and selective Polo-like kinase 1 (PLK1) inhibitors is reported. For the most interesting compounds, we discuss the biological activities, crystal structures and preliminary pharmacokinetic parameters. The more advanced compounds inhibit PLK1 in the enzymatic assay at the nM level and exhibit good activity in cell proliferation on A2780 cells. Furthermore, these compounds showed high levels of selectivity on a panel of unrelated kinases, as well as against PLK2 and PLK3 isoforms. Additionally, the compounds show acceptable oral bioavailability in mice making these inhibitors suitable candidates for further in vivo activity studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2011.11.065DOI Listing

Publication Analysis

Top Keywords

polo-like kinase
8
5-2-amino-pyrimidin-4-yl-1h-pyrrole 2-2-amino-pyrimidin-4-yl-1567-tetrahydro-pyrrolo[32-c]pyridin-4-one
4
2-2-amino-pyrimidin-4-yl-1567-tetrahydro-pyrrolo[32-c]pyridin-4-one derivatives
4
derivatives classes
4
classes selective
4
selective orally
4
orally polo-like
4
kinase inhibitors
4
inhibitors discovery
4
discovery characterization
4

Similar Publications

PLK1 overexpression suppresses homologous recombination and confers cellular sensitivity to PARP inhibition.

Sci Rep

December 2024

Department of Frontier Medicine, Institute of Medical Science, Graduate School of Medicine, St. Marianna University, Kawasaki, 2168511, Japan.

The overexpression of Polo-like kinase 1 (PLK1) is associated with poor clinical outcomes in various malignancies, making it an attractive target for anticancer therapies. Although recent studies suggest PLK1's involvement in homologous recombination (HR), the impact of its overexpression on HR remains unclear. In this study, we investigated the effect of PLK1 overexpression on HR using bioinformatics and experimental approaches.

View Article and Find Full Text PDF

Chromosome condensation plays a pivotal role during faithful chromosome segregation, hence, understanding the factors that drive condensation is crucial to get mechanistic insight into chromosome segregation. Previously, we showed that in budding yeast, the absence of the non-essential kinetochore proteins affects chromatin-condensin association in meiosis but not in mitosis. A differential organization of the kinetochores, that we and others observed earlier during mitosis and meiosis may contribute to the meiotic-specific role.

View Article and Find Full Text PDF

Polo-like kinase 4 accelerates glioma malignant progression and vasculogenic mimicry by phosphorylating EphA2.

Cancer Lett

December 2024

Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China. Electronic address:

Vasculogenic mimicry (VM), which involved the formation of vascular-like structures by highly invasive tumor cells, had been identified as one of the mechanisms contributing to resistance against anti-angiogenic therapy in patients with glioblastoma (GBM). Therefore, inhibition of VM formation may serve as an effective therapeutic strategy against angiogenesis resistance. Polo-like kinase 4 (PLK4), a protein kinase, had been linked to the progression of glioblastoma and was associated with an unfavorable prognosis.

View Article and Find Full Text PDF

Internal feedback circuits among MEX-5, MEX-6, and PLK-1 maintain faithful patterning in the embryo.

Proc Natl Acad Sci U S A

December 2024

Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.

Proteins become asymmetrically distributed in the one-cell embryo thanks to reaction-diffusion mechanisms that are often entangled in complex feedback loops. Cortical polarity drives the enrichment of the RNA-binding proteins MEX-5 and MEX-6 in the anterior cytoplasm through concentration gradients. MEX-5 and MEX-6 promote the patterning of other cytoplasmic factors, including that of the anteriorly enriched mitotic polo-like kinase PLK-1, but also contribute to proper cortical polarity.

View Article and Find Full Text PDF

Decoding the Nucleolar Role in Meiotic Recombination and Cell Cycle Control: Insights into Cdc14 Function.

Int J Mol Sci

November 2024

Instituto de Biología Funcional y Genómica, IBFG, CSIC-USAL, 37007 Salamanca, Spain.

The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it and phosphatases counteracting their activity to maintain balance. The nucleolus, as a biomolecular condensate, plays a key regulatory role by serving as a hub for ribosome biogenesis and the sequestration and release of various cell cycle regulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!