Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems.

Ultrasonics

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore.

Published: April 2012

Ultrasound-based thyroid nodule characterization into benign and malignant types is limited by subjective interpretations. This paper presents a Computer Aided Diagnostic (CAD) technique that would present more objective and accurate classification and further would offer the physician a valuable second opinion. In this paradigm, we first extracted the features that quantify the local changes in the texture characteristics of the ultrasound off-line training images from both benign and malignant nodules. These features include: Fractal Dimension (FD), Local Binary Pattern (LBP), Fourier Spectrum Descriptor (FS), and Laws Texture Energy (LTE). The resulting feature vectors were used to build seven different classifiers: Support Vector Machine (SVM), Decision Tree (DT), Sugeno Fuzzy, Gaussian Mixture Model (GMM), K-Nearest Neighbor (KNN), Radial Basis Probabilistic Neural Network (RBPNN), and Naive Bayes Classifier (NBC). Subsequently, the feature vector-classifier combination that results in the maximum classification accuracy was used to predict the class of a new on-line test thyroid ultrasound image. Two data sets with 3D Contrast-Enhanced Ultrasound (CEUS) and 3D High Resolution Ultrasound (HRUS) images of 20 nodules (10 benign and 10 malignant) were used. Fine needle aspiration biopsy and histology results were used to confirm malignancy. Our results show that a combination of texture features coupled with SVM or Fuzzy classifiers resulted in 100% accuracy for the HRUS dataset, while GMM classifier resulted in 98.1% accuracy for the CEUS dataset. Finally, for each dataset, we have proposed a novel integrated index called Thyroid Malignancy Index (TMI) using the combination of FD, LBP, LTE texture features, to diagnose benign or malignant nodules. This index can help clinicians to make a more objective differentiation of benign/malignant thyroid lesions. We have compared and benchmarked the system with existing methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2011.11.003DOI Listing

Publication Analysis

Top Keywords

benign malignant
16
malignant nodules
8
texture features
8
thyroid
5
ultrasound
5
non-invasive automated
4
automated thyroid
4
thyroid lesion
4
lesion classification
4
classification ultrasound
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!