Nanoscale antibiotic delivery has emerged as a promising therapeutic means to treat lung biofilm infection owed to its sputum penetrating ability. Due to the high antibiotic dosage requirement in anti-biofilm therapy, the most suitable formulation for this purpose is the antibiotic nanoparticles themselves, instead of the more extensively studied antibiotic-loaded nano-carriers, which often exhibit low drug loading. The present work details the preparation and characterization of antibiotic nanoparticle complex (or nanoplex) by self-assembly amphiphile-polyelectrolyte complexation process. Ofloxacin (OFX) and levofloxacin (LEV) are used as the antibiotics with dextran sulfate (DXT) as the polyelectrolyte. The nanoplex possesses high drug loading (up to 80%) and size<400nm ideal for sputum penetration. Unlike existing methods to prepare drug nanoparticles, the present method is fast, energy-minimal, solvent-free, and highly efficient as manifested in nearly 100% of drug is transformed into nanoplex. The effects of drug-to-polyelectrolyte charge ratio, pH, drug, and salt concentrations on the nanoplex characteristics (i.e. size, stability, drug loading) are investigated from which the optimal preparation conditions have been identified. Higher complexation efficiency and stronger agglomeration tendency are observed for LEV nanoplex owed to its higher hydrophobicity. The antibiotics are completely released from the nanoplex in aqueous salt solution within 3h and their antimicrobial activity is preserved upon complexation. The nanoplex is readily transformed into amorphous dry powders that remain stable after one-month storage owed to the high glass transition temperature. The antibiotic nanoplexes are highly charged enabling their subsequent functionalization for targeted delivery and controlled drug release purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2011.11.024DOI Listing

Publication Analysis

Top Keywords

antibiotic nanoparticle
8
nanoparticle complex
8
self-assembly amphiphile-polyelectrolyte
8
amphiphile-polyelectrolyte complexation
8
dextran sulfate
8
drug loading
8
antibiotic
5
green preparation
4
preparation antibiotic
4
complex potential
4

Similar Publications

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Tobramycin nanoformulation for chronic pulmonary infections: From drug product definition to scale-up for preclinical evaluation.

Int J Pharm

January 2025

CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Kusudama Therapeutics SA, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Biogipuzkoa Health Research Institute, Group of Innovation, 20014 San Sebastian, Spain.

Cystic fibrosis (CF) is characterized by abnormal mucus hydration due to a defective CF Transmembrane Regulator (CFTR) protein, leading to the production of difficult-to-clear mucus. This causes airflow obstruction, recurrent infections, and respiratory complications. Chronic lung infections are the leading cause of death for CF patients and inhaled tobramycin is the first-in-line antibiotic treatment against these infections, mainly caused by Pseudomonas aeruginosa in adult patients.

View Article and Find Full Text PDF

Environmentally-friendly rGO/Mn nanocomposites for efficient removal of tetracycline and its degradation pathway.

J Environ Manage

January 2025

Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China. Electronic address:

Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!