The spindle assembly checkpoint (SAC) restricts mitotic exit to cells that have completed chromosome-microtubule attachment. Cdc20 is a bifunctional protein. In complex with SAC proteins Mad2, BubR1, and Bub3, Cdc20 forms the mitotic checkpoint complex (MCC), which binds the anaphase-promoting complex (APC/C) and inhibits its mitotic exit-promoting activity. When devoid of SAC proteins, Cdc20 serves as an APC/C coactivator and promotes mitotic exit. During mitotic arrest, Cdc20 is continuously degraded via ubiquitin-dependent proteolysis and resynthesized. It is believed that this cycle keeps the levels of Cdc20 below a threshold above which Cdc20 would promote mitotic exit. We report that p31(comet), a checkpoint antagonist, is necessary for mitotic destabilization of Cdc20. p31(comet) depletion stabilizes the MCC, super-inhibits the APC/C, and delays mitotic exit, indicating that Cdc20 proteolysis in prometaphase opposes the checkpoint. Our studies reveal a homeostatic network in which checkpoint-sustaining and -repressing forces oppose each other during mitotic arrest and suggest ways for enhancing the sensitivity of cancer cells to antitubulin chemotherapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2011.11.014 | DOI Listing |
Nat Cell Biol
January 2025
CNRS UMR144 - UMR3664, Institut Curie, Sorbonne Université, PSL Research University, Paris, France.
Errors during cell division lead to aneuploidy, which is associated with genomic instability and cell transformation. In response to aneuploidy, cells activate the tumour suppressor p53 to elicit a surveillance mechanism that halts proliferation and promotes senescence. The molecular sensors that trigger this checkpoint are unclear.
View Article and Find Full Text PDFCell Death Dis
January 2025
Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.
Polyploidy is a common outcome of chemotherapies, but there is conflicting evidence as to whether polyploidy is an adverse, benign or even favourable outcome. We show Aurora B kinase inhibitors efficiently promote polyploidy in many cell types, resulting in the cell cycle exit in RB and p53 functional cells, but hyper-polyploidy in cells with loss of RB and p53 function. These hyper-polyploid cells (>8n DNA content) are viable but have lost long-term proliferative potential in vitro and fail to form tumours in vivo.
View Article and Find Full Text PDFCells Dev
January 2025
Université Paris-Saclay, Hôpital Kremlin Bicêtre, U1195, Inserm, 94276 Le Kremlin Bicêtre, France. Electronic address:
The temporal control of mitotic exit of individual Schwann cells (SCs) is essential for radial sorting and peripheral myelination. However, it remains unknown when, during their multiple rounds of division, SCs initiate myelin signaling in vivo. By manipulating SC division during development, we report that when SCs skip their division during migration, but not during radial sorting, they fail to myelinate peripheral axons.
View Article and Find Full Text PDFCell Div
December 2024
Institute for Research in Immunology and Cancer, Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Québec, Canada.
Background: Mitosis and cytokinesis are regulated by reversible phosphorylation events controlled by kinases and phosphatases. Drosophila Polo kinase, like its human ortholog PLK1, plays several roles in this process. Multiple mechanisms contribute to regulate Polo/PLK1 activity, localization and interactions.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Biology, Saint Louis University, 3507 Laclede Ave, Saint Louis, MO 63103, USA.
Moderating the pool of active ribosomal subunits is critical for maintaining global translation rates. A factor crucial for modulating the 60S ribosomal subunit is eukaryotic translation initiation factor-6 (eIF6). Release of eIF6 from the 60S subunit is essential to permit 60S interactions with the 40S subunit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!