Introduction: Articular cartilage functions in withstanding mechanical loads and provides a lubricating surface for frictionless movement of joints. Osteoarthritis, characterised by cartilage degeneration, develops due to the progressive erosion of structural integrity and eventual loss of functional performance. Osteoarthritis is a multi-factorial disorder; two important risk factors are abnormal mechanical load and genetic predisposition. A single nucleotide polymorphism analysis demonstrated an association of hip osteoarthritis with an Arg324Gly substitution mutation in FrzB, a Wnt antagonist. The purpose of this study was two-fold: to assess whether mechanical stimulation modulates β-catenin signalling and catabolic gene expression in articular chondrocytes, and further to investigate whether there is an interplay of mechanical load and Wnt signalling in mediating a catabolic response.
Methods: Chondrocytes were pre-stimulated with recombinant Wnt3A for 24 hours prior to the application of tensile strain (7.5%, 1 Hz) for 30 minutes. Activation of Wnt signalling, via β-catenin nuclear translocation and downstream effects including the transcriptional activation of c-jun, c-fos and Lef1, markers of chondrocyte phenotype (type II collagen (col2a1), aggrecan (acan), SOX9) and catabolic genes (MMP3, MMP13, ADAMTS-4, ADAMTS-5) were assessed.
Results: Physiological tensile strain induced col2a1, acan and SOX9 transcription. Load-induced acan and SOX9 expression were repressed in the presence of Wnt3A. Load induced partial β-catenin nuclear translocation; there was an additive effect of load and Wnt3A on β-catenin distribution, with both extensive localisation in the nucleus and cytoplasm. Immediate early response (c-jun) and catabolic genes (MMP3, ADAMTS-4) were up-regulated in Wnt3A stimulated chondrocytes. With load and Wnt3A there was an additive up-regulation of c-fos, MMP3 and ADAMTS-4 transcription, whereas there was a synergistic interplay on c-jun, Lef1 and ADAMTS-5 transcription.
Conclusion: Our data suggest that load and Wnt, in combination, can repress transcription of chondrocyte matrix genes, whilst enhancing expression of catabolic mediators. Future studies will investigate the respective roles of abnormal loading and genetic predisposition in mediating cartilage degeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334656 | PMC |
http://dx.doi.org/10.1186/ar3536 | DOI Listing |
Arterial compliance (AC) is an important cardiovascular parameter characterizing mechanical properties of arteries. AC is significantly influenced by arterial wall structure and vasomotion, and it markedly influences cardiac load. A new method, based on a two-element Windkessel model, has been recently proposed for estimating AC as the ratio of the time constant T of the diastolic blood pressure decay and peripheral vascular resistance derived from clinically available stroke volume measurements and selected peripheral blood pressure parameters which are less prone to peripheral distortions.
View Article and Find Full Text PDFPeerJ
January 2025
University of Amsterdam, Amsterdam, Netherlands.
Background: Achilles tendinopathy (AT) management can be difficult, given the paucity of effective treatment options and the degenerative nature of the condition. Innovative therapies for Achilles tendinopathy are therefore direly needed. New therapeutic developments predominantly begin with preclinical animal and in vitro studies to understand the effects at the molecular level and to evaluate toxicity.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
Optical metasurfaces have found widespread applications in the field of optoelectronic devices. However, achieving dynamic and flexible control over metasurface functionalities, while also developing simplified fabrication methods for metasurfaces, continues to pose a significant challenge. Here, the study introduces a PCM-only metasurface that exclusively consists of voxel units crafted from different phases of phase-change materials.
View Article and Find Full Text PDFJ Appl Biomech
January 2025
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Repetitive manual labor tasks involving twisting, bending, and lifting commonly lead to lower back and knee injuries in the workplace. To identify tasks with high injury risk, we recruited N = 9 participants to perform industry-relevant, 2-handed lifts with a 11-kg weight. These included symmetrical/asymmetrical, ascending/descending lifts that varied in start-to-end heights (knee-to-waist and waist-to-shoulder).
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!