Objectives. Although the load impedance of a pulse generator has a significant effect on battery life, the electrical impedance of contact arrays in spinal cord stimulation (SCS) has not been extensively studied. We sought to characterize the typical impedance values measured from common quadripolar percutaneous SCS contact arrays. Methods. In 36 patients undergoing percutaneous trial stimulation for various chronic pain conditions, bipolar impedance between adjacent contacts of 64 leads with 9 mm center-to-center spacing was measured in two different vertebral level regions, cervical (C3-C7) and lower-thoracic (T7-T12). Multiple linear regression was applied to analyze the contribution of six variables to the biological tissue portion of the impedance (excluding the resistance of the lead wires). Results. The median impedance in the cervical region (351 ± 90 Ω) was significantly lower (36%, p < 0.001) than in the lower-thoracic region (547 ± 151 Ω). In addition, time since implant had a weaker but still significant effect on tissue impedance. Conclusions. Results from finite-difference mathematical modeling of SCS suggest that the difference in tissue impedance related to vertebral level may be due to the dorsoventral position of the lead in the epidural space. The presence of a larger space between the triangularly shaped dorsal part of the vertebral arch and the round shape of the dural sac in the lower-thoracic region increases the likelihood that the stimulating lead will not make dural contact, and thus "see" an increased impedance from the surrounding epidural fat. This implies that the energy requirements for stimulation in the thoracic region will be higher than in the cervical region, at least during the acute phase of implant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1525-1403.2006.00050.x | DOI Listing |
Curr Pain Headache Rep
January 2025
Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA.
Purpose Of The Review: In the United States, spinal cord injuries affect approximately 18,000 individuals annually, most commonly resulting from mechanical trauma. The consequent paraplegia severely impairs motor functions, creating an urgent need for innovative therapeutic strategies that extend beyond traditional rehabilitation and pharmacotherapy. This review assesses the effectiveness of Spinal Cord Stimulation (SCS) in improving motor function in patients with spinal cord injuries, with a particular focus on paraplegia.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, HSF III, R1173, Baltimore, MD, 21202, USA.
The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.
The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.
View Article and Find Full Text PDFElife
January 2025
Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Canada.
Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA.
This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!