Wearable data collection system for online gait stability analysis.

Neuromodulation

University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia and Tohoku University, Graduate School of Engineering, Department of Electronic, Communication and Information Engineering, Sendai, Japan.

Published: July 2004

We had shown in our previous research that the stability assessment and control are essential for generation of faster and more energy efficient functional electrical stimulation (FES) and/or crutch-assisted gait. The objective of our recent research work has been to design a wearable and portable system for gait stability analysis with online capabilities that is also applicable to crutch-assisted gait modes. The developed wearable stability assessment system for as yet only biped gait consists of foot switches and goniometers attached to the leg joints. The instantaneous static and dynamic stability is, within the wearable system, assessed from the trajectory of the estimated body center of gravity (COG(HAT) ) and the supporting area shape/size as derived from step length and foot-floor contact state. We used motion analysis system data as reference for testing the wearable system accuracy. The wearable system was tested on five healthy subjects and one above-knee amputee. It proved to be reasonably accurate if compared to the classical, motion analysis system based method. However, additional work is required to port the system to the FES assisted and/or crutch assisted gait.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1094-7159.2004.04202.xDOI Listing

Publication Analysis

Top Keywords

wearable system
12
system
9
gait stability
8
stability analysis
8
stability assessment
8
crutch-assisted gait
8
motion analysis
8
analysis system
8
wearable
6
gait
6

Similar Publications

Nanogenerators for gas sensing applications.

Front Chem

January 2025

Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China.

Gas sensors are now widely employed in many industries due to the rapid speed of industrialization and the growth of the Internet of Things. However, the wearability and mobility of traditional gas sensors are limited by their high reliance on external power sources. Nanogenerators (NGs) can compensate for their power source limitations when paired with gas sensors by transforming the environment's widely dispersed low-frequency energy into electrical energy, allowing for self-powered gas detection.

View Article and Find Full Text PDF

Significance: Cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics for regional cerebrovascular monitoring. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting.

Aim: We aim to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain.

View Article and Find Full Text PDF

Wearable thermoelectric generator (TEG) can collect human body heat and convert it into electrical energy, achieving self-powering of the device and thus becoming a hot research topic at present. By utilization of three-dimensional spiral thin-film thermoelectric structures and passive radiation cooling methods, the heat transfer area can be increased and power generation can be enhanced. In order to study the effect of outdoor radiation cooling on the thermoelectric performance of spiral heating, as well as the TEG performance output under different external environments and circuit loads, this paper proposes a new three-dimensional coupled numerical model of the spiral thermoelectric wristband system with multiple physical fields.

View Article and Find Full Text PDF

Developing hydrogels with high conductivity and toughness a facile strategy is important yet challenging. Herein, we proposed a new strategy to develop conductive hydrogels by growing metal dendrites. Water-soluble Sn ions were soaked into the gel and then converted to Sn dendrites an electrochemical reaction; the excessive Sn ions were finally removed by water dialysis, accompanied by dramatic shrinkage of the gel.

View Article and Find Full Text PDF

The integration of hydrogen-bonded organic frameworks (HOFs) with flexible electronic technologies offers a promising strategy for monitoring detailed health information, owing to their inherent porosity, excellent biocompatibility, and tunable catalytic capabilities. However, their application in wearable and real-time health monitoring remains largely unexplored, primarily due to the mechanical mismatch between the traditionally fragile HOFs particles and the softness of human skin. Herein, this study demonstrates an epidermal biosensor that maintains reliable sensing capability even under extreme deformation and complex environmental conditions by integrating HOFs films with wavy bioelectrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!