Genomic distance under gene substitutions.

BMC Bioinformatics

Instituto Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias, 25250-020, Brazil.

Published: October 2011

Background: The distance between two genomes is often computed by comparing only the common markers between them. Some approaches are also able to deal with non-common markers, allowing the insertion or the deletion of such markers. In these models, a deletion and a subsequent insertion that occur at the same position of the genome count for two sorting steps.

Results: Here we propose a new model that sorts non-common markers with substitutions, which are more powerful operations that comprehend insertions and deletions. A deletion and an insertion that occur at the same position of the genome can be modeled as a substitution, counting for a single sorting step.

Conclusions: Comparing genomes with unequal content, but without duplicated markers, we give a linear time algorithm to compute the genomic distance considering substitutions and double-cut-and-join (DCJ) operations. This model provides a parsimonious genomic distance to handle genomes free of duplicated markers, that is in practice a lower bound to the real genomic distances. The method could also be used to refine orthology assignments, since in some cases a substitution could actually correspond to an unannotated orthology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271670PMC
http://dx.doi.org/10.1186/1471-2105-12-S9-S8DOI Listing

Publication Analysis

Top Keywords

genomic distance
12
non-common markers
8
insertion occur
8
occur position
8
position genome
8
duplicated markers
8
markers
6
genomic
4
distance gene
4
gene substitutions
4

Similar Publications

Deciphering the Coupling State-Dependent Transcription Termination in the Escherichia coli Galactose Operon.

Mol Microbiol

January 2025

Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea.

The distance between the ribosome and the RNA polymerase active centers, known as the mRNA loop length, is crucial for transcription-translation coupling. Despite the existence of multiple expressomes with varying mRNA loop lengths, their in vivo roles remain largely unexplored. This study examines the mechanisms governing transcription termination in the Escherichia coli galactose operon, revealing a crucial role in the transcription and translation coupling state.

View Article and Find Full Text PDF

Plants lack specialized and mobile immune cells. Consequently, any cell type that encounters pathogens must mount immune responses and communicate with surrounding cells for successful defence. However, the diversity, spatial organization and function of cellular immune states in pathogen-infected plants are poorly understood.

View Article and Find Full Text PDF

Plant genebanks contain large numbers of germplasm accessions that likely harbor useful alleles or genes absent in commercial plant breeding programs. Broadening the genetic base of commercial alfalfa germplasm with these valuable genetic variations can be achieved by screening the extensive genetic diversity in germplasm collections and enabling maximal recombination among selected genotypes. In this study, we assessed the genetic diversity and differentiation of germplasm pools selected in northern U.

View Article and Find Full Text PDF

Analysis of cardiac developmental toxicity induced by m-cresol in early life of zebrafish and its mechanism.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China. Electronic address:

The compound m-Cresol, also referred to as 3-methylphenol,acts as a precursor in the creation of pesticides and plasticizers. This research has conducted a thorough evaluation of the toxic effects of m-cresol on the cardiac development of juvenile zebrafish, from 6 to 72 hpf. The study's results reveal that higher concentrations of m-Cresol, compared to lower ones, result in more severe heart abnormalities in zebrafish larvae.

View Article and Find Full Text PDF

Mosquito-borne diseases affect millions and cause numerous deaths annually. Effective vector control, which hinges on understanding their dispersal, is vital for reducing infection rates. Given the variability in study results, likely due to environmental and human factors, gathering local dispersal data is critical for targeted disease control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!