Background: The cytogenetic characteristic of Chronic Myeloid Leukemia (CML) is the formation of the Philadelphia chromosome gene product, BCR-ABL. Given that BCR-ABL is the specific target of Gleevec in CML treatment, we investigated the regulation of the catalytic component of telomerase, hTERT, by BCR-ABL at multiple levels in K562 cells.
Methods: Molecular techniques such as over expression, knockdown, real-time PCR, immunoprecipitation, western blotting, reporter assay, confocal microscopy, telomerase assays and microarray were used to suggest that hTERT expression and activity is modulated by BCR-ABL at multiple levels.
Results: Our results suggest that BCR-ABL plays an important role in regulating hTERT in K562 (BCR-ABL positive human leukemia) cells. When Gleevec inhibited the tyrosine kinase activity of BCR-ABL, phosphorylation of hTERT was downregulated, therefore suggesting a positive correlation between BCR-ABL and hTERT. Gleevec treatment inhibited hTERT at mRNA level and significantly reduced telomerase activity (TA) in K562 cells, but not in HL60 or Jurkat cells (BCR-ABL negative cells). We also demonstrated that the transcription factor STAT5a plays a critical role in hTERT gene regulation in K562 cells. Knockdown of STAT5a, but not STAT5b, resulted in a marked downregulation of hTERT mRNA level, TA and hTERT protein level in K562 cells. Furthermore, translocation of hTERT from nucleoli to nucleoplasm was observed in K562 cells induced by Gleevec.
Conclusions: Our data reveal that BCR-ABL can regulate TA at multiple levels, including transcription, post-translational level, and proper localization. Thus, suppression of cell growth and induction of apoptosis by Gleevec treatment may be partially due to TA inhibition. Additionally, we have identified STAT5a as critical mediator of the hTERT gene expression in BCR-ABL positive CML cells, suggesting that targeting STAT5a may be a promising therapeutic strategy for BCR-ABL positive CML patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3259104 | PMC |
http://dx.doi.org/10.1186/1471-2407-11-512 | DOI Listing |
Front Pharmacol
January 2025
Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia.
Background: The natural killer (NK) activity of peripheral blood mononuclear cells (PBMCs) is a crucial defense against the onset and spread of cancer. Studies have shown that patients with reduced NK activity are more susceptible to cancer, and NK activity tends to decrease due to cancer-induced immune suppression. Enhancing the natural cytotoxicity of PBMCs remains a significant task in cancer research.
View Article and Find Full Text PDFWorld J Oncol
February 2025
Department of Cell Biology and Genetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
Background: Uncoupling protein 2 (UCP2) is essential for maintaining redox homeostasis and regulating energy metabolism. Abnormal expression of UCP2 has been associated with various tumors, including leukemia. Genipin (GEN), a specific inhibitor of UCP2, has a long history of use in traditional Chinese medicine.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
The efficacy of cancer immunotherapy is significantly influenced by the heterogeneity of individual tumors and immune responses. To investigate this phenomenon, a microfluidic platform is constructed for profiling immune-cancer cell interactions at the single-cell proteomics level for the first time. Based on the platform, a comprehensive workflow is proposed for achieving accurate single-cell pairing of an immune cell and a cancer cell with low cell damage and high success rate up to 95%, cell pair co-culture, and real-time microscopic monitoring of the cell-pair interactions, cell pair retrieval, mass spectrometry-based proteomic analysis of singe cell pairs, and decoupling of the proteomic information for each cell within the cell pair with the stable-isotope labeling method.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China.
Hypoxia is a key feature of the tumor microenvironment that leads to the failure of many chemotherapies and induces more aggressive and resistant cancer phenotypes. Up to date, there are very few compounds and treatments that can target hypoxia. BE-43547A from Streptomyces sp.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Department of Pharmacology, University of Alberta, Edmonton, Canada. Electronic address:
Protein kinase C (PKC) signalling has been shown to be dysregulated in various cancers including acute lymphoblastic leukemia (ALL). We have previously determined that changes in the expression levels of SLC43A3-encoded equilibrative nucleobase transporter 1 (ENBT1) can significantly alter 6-mercaptopurine (6-MP) toxicity in ALL cells. 6-MP is a common drug used in ALL chemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!