The purpose of this study was to test the usefulness of combining two types of analysis to investigate sports performance with the aim of optimizing it. These two types of analysis correspond to two levels of athletes' activity: (a) their experiences during performance and (b) the biomechanical characteristics of their movements. Rowing served as an illustration, and the activity of one female crew member was studied during a race. Three types of data were collected: (a) audiovisual data recorded during the race; (b) verbalization data obtained in interviews conducted afterward; and (c) biomechanical data. The courses of experience of the two rowers during the race were reconstructed on the basis of the audiovisual and verbalization data. This paper presents a detailed analysis of a single phenomenon of the race experienced by one of the rowers. According to the coaches, it reflected a dysfunction in crew coordination. The aim of this analysis was to identify the biomechanical characteristics of the rowers' movements that might explain it. The results showed that the phenomenon could be explained principally by an amplitude differential between the two rowers' strokes. On this basis, the coaches defined new training objectives to remedy the dysfunction in crew coordination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0838.2011.01421.x | DOI Listing |
Ann Med
December 2025
Department of Assisted Reproductive Centre, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China.
Background: Butyrate may inhibit SARS-CoV-2 replication and affect the development of COVID-19. However, there have been no systematic comprehensive analyses of the role of butyrate metabolism-related genes (BMRGs) in COVID-19.
Methods: We performed differential expression analysis of BMRGs in the brain, liver and pancreas of COVID-19 patients and controls in GSE157852 and GSE151803.
Res Social Adm Pharm
March 2025
Department of Primary Care and Medical Education, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. Electronic address:
Background: Deprescribing by physicians based on the suggestions of community pharmacists is useful to ensure medication safety. Pharmacist-led deprescribing is not always implemented smoothly because of communication gaps between physicians and pharmacists. Our previous study found that assertiveness, as a communication style, is associated with pharmacist-initiated prescription changes for medication safety; however, its association with community pharmacist-led deprescribing is unclear.
View Article and Find Full Text PDFAnal Chim Acta
May 2025
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China. Electronic address:
Background: Herbal medicines and their preparations play a significant role in healthcare systems, yet concerns remain about their quality consistency. Chemical fingerprinting and multi-component quantitative analysis are the commonly used analytical methods and are widely applied in the quality analysis of herbal medicines. The study uses Gegen Qinlian tablets (GQTs) as a case to propose a comprehensive quality consistency evaluation system.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2025
Centre for Bioinformatics, M.D. University, Rohtak, Haryana, India. Electronic address:
The emergence of multidrug resistanceagainst several antifungal drugs and the absence of alternate therapy limits the treatment choices leading to the spread of Candida auris infections, especially inimmunocompromised patients. This work aims to construct the multi-epitope vaccine using an immuno-informatics approachdue to the lack of efficient treatments for C. auris.
View Article and Find Full Text PDFCold Spring Harb Protoc
March 2025
Department of Ecology, University of Chicago, Chicago, Illinois 60637, USA.
Understanding how the auxin hormone signaling pathway components come together to orchestrate cellular responses is key to engineering the growth and development of maize. Although a variety of techniques exist to measure auxin activities in plants, many are time- and resource-intensive or do not easily allow for high-throughput quantitative measurement of component libraries. The AuxInYeast system is a synthetic biology tool that facilitates complex biochemical analysis of the auxin hormone signaling pathway from essentially any plant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!