A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress. | LitMetric

Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress.

Physiol Plant

Crop Systems and Global Change Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.

Published: March 2012

Maize (Zea mays) was grown in indoor chambers with ambient (38 Pa) and elevated (70 Pa) CO(2) . Drought treatments were imposed 17 days after sowing by withholding nutrient solution. Decreases of soil water content, leaf water potential, net CO(2) assimilation and stomatal conductance as a result of drought were delayed approximately 2 days by CO(2) enrichment. Concentrations of 28 of 33 leaf metabolites were altered by drought. Soluble carbohydrates, aconitate, shikimate, serine, glycine, proline and eight other amino acids increased, and leaf starch, malate, fumarate, 2-oxoglutarate and seven amino acids decreased with drought. Drought-dependent decreases of nitrate, alanine and aspartate were impacted by limiting nitrogen. Transcript levels of 14 stress-related maize genes responded to drought but this was delayed or modified by CO(2) enrichment. Overall, CO(2) enrichment eliminated many early responses of maize metabolites and transcripts to water stress but was less effective when drought was severe. Four metabolite groupings were identified by clustering analysis. These groupings included compounds that decreased with water stress, compounds involved in osmotic adjustment and aromatic compounds that alleviate oxidative stress. Metabolite changes also supported the suggestion that water stress inhibited C(4) photosynthesis and induced photorespiration.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-3054.2011.01555.xDOI Listing

Publication Analysis

Top Keywords

water stress
16
co2 enrichment
12
responses maize
8
drought delayed
8
amino acids
8
water
6
drought
6
stress
5
co2
5
impact carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!