Diffusion tensor imaging (DTI) is rarely applied in spinal cord injury (SCI). The aim of this study was to correlate diffusion properties after SCI with electrophysiological and neurological measures. Nineteen traumatic cervical SCI subjects and 28 age-matched healthy subjects participated in this study. DTI data of the spinal cord were acquired with a Philips Achieva 3 T MR scanner using an outer volume suppressed, reduced field of view (FOV) acquisition with oblique slice excitation and a single-shot EPI readout. Neurological and electrophysiological measures, American Spinal Injury Association (ASIA) impairment scale scores, and motor (MEP) and somatosensory evoked potentials (SSEP) were assessed in SCI subjects. Fractional anisotropy (FA) values were decreased in the SCI subjects compared to the healthy subjects. In upper cervical segments, the decrease in FA was significant for the evaluation of the entire cross-sectional area of the spinal cord, and for corticospinal and sensory tracts. A decreasing trend was also found at the thoracic level for the corticospinal tracts. The decrease of DTI values correlated with the clinical completeness of SCI, and with SSEP amplitudes. The reduced DTI values seen in the SCI subjects are likely due to demyelination and axonal degeneration of spinal tracts, which are related to clinical and electrophysiological measures. A reduction in DTI values in regions remote from the injury site suggests their involvement with wallerian axonal degeneration. DTI can be used for the quantitative evaluation of the extent of spinal cord damage, and eventually to monitor the effects of future regeneration-inducing treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/neu.2011.2027 | DOI Listing |
Front Immunol
January 2025
Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China.
An external trauma, illness, or other pathological cause can harm the structure and function of the spinal cord, resulting in a significant neurological disorder known as spinal cord injury (SCI). In addition to impairing movement and sensory functions, spinal cord injury (SCI) triggers complex pathophysiological responses, with the spatial dynamics of immune cells playing a key role. The inflammatory response and subsequent healing processes following SCI are profoundly influenced by the spatial distribution and movement of immune cells.
View Article and Find Full Text PDFBMJ Neurol Open
January 2025
Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand.
Objective: This study aimed to elucidate the clinical manifestations, laboratory findings and outcomes of patients with intravascular large B cell lymphoma (IVLBCL) with neurological involvement and to differentiate IVLBCL with and without neurological involvement.
Methods: A cohort study was conducted at Siriraj Hospital, Mahidol University, Thailand, between January 2005 and September 2024. Clinical data, laboratory values and central nervous system imaging results were analysed.
Cureus
December 2024
Neurocritical Care, Caritas Hospital and Institute of Health Sciences, Kottayam, IND.
Here, we present a case of Guillain-Barré syndrome (GBS) that mimicked brain death. A 66-year-old lady with a medical history of breast cancer (now receiving hormone therapy), hypertension, and hypothyroidism, presented to the emergency department. The patient was admitted to the neuro ICU with absent brainstem and spinal cord responses, concerning for possible brain death.
View Article and Find Full Text PDFCureus
December 2024
Neurosurgery, Fluminense Federal University, Niterói, BRA.
Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by significant sensory, motor, and autonomic dysfunction, often following trauma or nerve injury. Historically known as causalgia and reflex sympathetic dystrophy, CRPS manifests as severe, disproportionate pain, often accompanied by hyperalgesia, allodynia, trophic changes, and motor impairments. Classified into type I (without nerve injury) and type II (associated with nerve damage), CRPS exhibits a complex pathophysiology involving peripheral and central sensitization, neurogenic inflammation, maladaptive brain plasticity, and potential autoimmune and psychological influences.
View Article and Find Full Text PDFWorld J Orthop
January 2025
Department of Orthopedics, The 940 Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu Province, China.
Background: Tuberculosis is among the most devastating infectious diseases worldwide. Spinal tuberculosis is not easy to detect at an early stage, which without effective treatment often leads to spinal deformity and spinal cord damage which in turn cause complications such as paraplegia and quadriplegia. In this study, we established a model using three concentrations of bacteria and carried out a comprehensive evaluation of the model by imaging, general observations, and histopathological and bacteriological studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!