Primitive photosynthetic microorganisms, either dormant or dead, may remain today on the martian surface, akin to terrestrial cyanobacteria surviving endolithically in martian analog sites on Earth such as the Antarctic Dry Valleys and the Atacama Desert. Potential markers of martian photoautotrophs include the red edge of chlorophyll reflectance spectra or fluorescence emission from systems of light-harvesting pigments. Such biosignatures, however, would be modified and degraded by long-term exposure to ionizing radiation from the unshielded cosmic ray flux onto the martian surface. In this initial study into this issue, three analytical techniques--absorbance, reflectance, and fluorescence spectroscopy--were employed to determine the progression of the radiolytic destruction of cyanobacteria. The pattern of signal loss for chlorophyll reflection and fluorescence from several biomolecules is characterized and quantified after increasing exposures to ionizing gamma radiation. This allows estimation of the degradation rates of cyanobacterial biosignatures on the martian surface and the identification of promising detectable fluorescent break-down products.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ast.2011.0663DOI Listing

Publication Analysis

Top Keywords

martian surface
12
cyanobacterial biosignatures
8
ionizing radiation
8
martian
5
degradation cyanobacterial
4
biosignatures ionizing
4
radiation primitive
4
primitive photosynthetic
4
photosynthetic microorganisms
4
microorganisms dormant
4

Similar Publications

Utilizing Martian samples for future planetary exploration-Characterizing hazards and resources.

Proc Natl Acad Sci U S A

January 2025

Division of Space, Ecological, Arctic, and Resource-limited (SPEAR) Medicine, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA 02114.

One of the most surprising and important findings of the first human landings on the Moon was the discovery of a very fine layer of lunar dust covering the entire surface of Moon along with the negative impacts of this dust on the well-being and operational effectiveness of the astronauts, their equipment, and instrumentation. The United States is now planning for human missions to Mars, a planet where dust can also be expected to be ubiquitous for many or most landing sites. For these missions, the design and operations of key hardware systems must take this dust into account, especially when related to crew health and safety.

View Article and Find Full Text PDF

Fundamental constraints and questions from the study of martian meteorites and the need for returned samples.

Proc Natl Acad Sci U S A

January 2025

School of Geographical and Earth Sciences, Gregory Building, University of Glasgow, Glasgow G12 8QQ, Scotland.

Physical materials from planetary bodies are crucial for understanding fundamental processes that constrain the evolution of the solar system, as samples can be analyzed at high precision and accuracy in Earth-based laboratories. Mars is the only planet outside of Earth from which we possess samples in the form of meteorites. Martian meteorites (n > 350) have enabled constraints to be placed on various aspects of the red planet's formation and evolution, notably: that Mars accreted and differentiated rapidly; that the planet has a complex volatile element evolution; and that it has always been volcanically active with a rich and diverse magmatic history.

View Article and Find Full Text PDF

The value of returning a sample of the Martian atmosphere.

Proc Natl Acad Sci U S A

January 2025

Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095.

The elemental and isotopic abundances of major species in the Martian atmosphere have been determined, but analyses often lack sufficient precision, and those of minor and trace species are frequently not well known. Many important questions about the evolution and current state of Mars require the kind of knowledge that can be gained from analysis of a returned sample of the Martian atmosphere. Key target species include the noble gases, nitrogen, and various species containing carbon, hydrogen, and oxygen, such as methane.

View Article and Find Full Text PDF

The Red Planet is a magnetic planet. The Martian crust contains strong magnetization from a core dynamo that likely was active during the Noachian period when the surface may have been habitable. The evolution of the dynamo may have played a central role in the evolution of the early atmosphere and the planet's transition to the current cold and dry state.

View Article and Find Full Text PDF

The possible presence of brines on Mars adds an intriguing dimension to the exploration of Martian environments. Their potential involvement in the formation of recurring slope lineae has sparked debates on the existence of liquid water versus alternative dry processes. In situ instrumentation on rovers and landers has been instrumental in providing valuable data for comprehending the dynamics of brines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!