S-nitrosothiol (RSNO) solutions represent a valuable source of nitric oxide and could be used as topical vasodilators, but their fast decomposition rate poses a serious obstacle to their potentially widespread therapeutic use. Our aim was to characterize and quantify the effect of pH on S-nitrosothiol formation and decomposition in simple aqueous solutions of S-nitrosoglutathione (GSNO), S-nitroso-N-acetylcysteine (SNAC) and S-nitroso-3-mercaptopropionic acid (SN3MPA). Furthermore, we investigated the effect of storage pH on the stability of GSNO incorporated in poly(ethylene glycol)/ poly(vinyl alcohol) matrices. S-nitrosothiol concentrations were measured spectrophotometrically and laser Doppler scanning method was used to assess dermal blood flow. GSH and NAC solutions reached a complete transformation to nitrosothiols when synthesized using acidic NaNO(2) solution. The initial concentration of all investigated RSNOs decreased more slowly with pH adjusted to mildly basic values (8.4-8.8) for the storage period. Polymer gels of PVA/PEG compositions at mildly basic storage pH further reduced the decomposition rate succeeding to contain 46.8% of the initial GSNO concentration for 25 days. This amount of topically administered GSNO was still capable of increasing the dermal blood flow over 200% in human subjects.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10715762.2011.647692DOI Listing

Publication Analysis

Top Keywords

decomposition rate
8
dermal blood
8
blood flow
8
mildly basic
8
increased stability
4
s-nitrosothiol
4
stability s-nitrosothiol
4
solutions
4
s-nitrosothiol solutions
4
solutions modulations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!