A pharmacokinetic-pharmacodynamic model for predicting the impact of CYP2C9 and VKORC1 polymorphisms on fluindione and acenocoumarol during induction therapy.

Clin Pharmacokinet

Service de Gntique Molculaire, Pharmacogntique et Hormonologie, Hpital Bictre, Assistance Publique-Hpitaux de Paris, Le Kremlin Bictre, France.

Published: January 2012

Background And Objective: Vitamin K epoxide reductase complex, subunit 1 (VKORC1) and cytochrome P450 2C9 (CYP2C9) polymorphisms are taken into account when predicting a safe oral dose of coumarin anticoagulant therapy, but little is known about the effects of genetic predictors on the response to fluindione and acenocoumarol. The aims of this study were to characterize the relationship between fluindione and acenocoumarol concentrations and the international normalized ratio (INR) response, and to identify genetic predictors that are important for dose individualization.

Methods: Fluindione concentrations, S- and R-acenocoumarol concentrations, the INR and genotype data from healthy subjects were used to develop a population pharmacokinetic-pharmacodynamic model in Monolix software. Twenty-four White healthy subjects were enrolled in the pharmacogenetic study. The study was an open-label, randomized, two-period cross-over study. The subjects received two doses of an oral anticoagulant: 20 mg of fluindione (period A) or 4 mg of acenocoumarol (period B). The pharmacokinetics and pharmacodynamics were studied from day 2 to day 3.

Results: A two-compartment model with a first-order input model was selected as the base model for the two drugs. The pharmacodynamic response was best described by an indirect action model with S-acenocoumarol concentrations and fluindione concentrations as the only exposure predictors of the INR response. Three covariates (CYP2C9 genotype, VKORC1 genotype and body weight) were identified as important predictors for the pharmacokinetic-pharmacodynamic model of S-acenocoumarol, and four covariates (CYP2C9 genotype, VKORC1 genotype, CYP1A2 phenotype and body weight) were identified as predictors for the pharmacokinetic-pharmacodynamic model of fluindione. Because some previous studies have shown a dose-response relationship between smoking exposure and the CYP1A2 phenotype, it was also noted that smokers have greater CYP1A2 activity.

Conclusion: During initiation of therapy, CYP2C9 and VKORC1 genetic polymorphisms are important predictors of fluindione and acenocoumarol pharmacokinetic-pharmacodynamic responses. Our result suggests that it is important to take the CYP1A2 phenotype into account to improve individualization of fluindione therapy, in addition to genetic factors.

Download full-text PDF

Source
http://dx.doi.org/10.2165/11595560-000000000-00000DOI Listing

Publication Analysis

Top Keywords

pharmacokinetic-pharmacodynamic model
16
fluindione acenocoumarol
16
cyp1a2 phenotype
12
fluindione
9
cyp2c9 vkorc1
8
genetic predictors
8
inr response
8
fluindione concentrations
8
healthy subjects
8
model s-acenocoumarol
8

Similar Publications

Granulocyte colony-stimulating factor (G-CSF) mobilizes peripheral blood (PB) progenitor cells from bone marrow (BM) into circulation for PB stem cell transplantation (PBSCT). This study aimed to develop a population pharmacokinetic-pharmacodynamic (PK-PD) model of filgrastim in healthy subjects to optimize PB CD34 cell collection. Plasma filgrastim concentrations and CD34 cell count data were obtained from a clinical study involving healthy Korean subjects.

View Article and Find Full Text PDF

Purpose: Determining the optimal dosage of norvancomycin (NVCM) for Chinese patients with community-acquired pneumonia (CAP) caused by gram-positive cocci remains uncertain. This research aimed to identify influential factors affecting NVCM pharmacokinetics and explore optimal dosage regimens via population pharmacokinetic (PPK) analysis.

Patients And Methods: A prospective analysis was conducted at the Second Hospital of Hebei Medical University (Shijiazhuang, China).

View Article and Find Full Text PDF

Introduction: Pralurbactam (FL058) is a novel β-lactamase inhibitor with good inhibitory activity on class A, C, and D β-lactamases. This study aimed to evaluate the pharmacokinetic/pharmacodynamic (PK/PD) relationship of pralurbactam/meropenem in a neutropenic murine thigh infection model.

Methods: After 2-h infection, neutropenic mice was treated with meropenem every 2 h alone or in combination with pralurbactam at different dosing frequencies for 24 h, and the colony count in the thighs was determined before and after treatment.

View Article and Find Full Text PDF

Introduction: Tuberculosis (TB) is the leading infectious cause of death globally. Despite WHO recommendations for TB preventive therapy (TPT), challenges persist, including incompletion of treatment and adverse drug reactions (ADRs). There is limited data on the 3-month isoniazid and rifapentine (3HP) pharmacokinetics, pharmacogenomics and their relation with ADRs.

View Article and Find Full Text PDF

Background: MDR Gram-negative bacteria, such as ESBL-producing and carbapenemase-producing Klebsiella pneumoniae, represent major global health threats. Treatment options are limited due to increasing resistance and slowed development of novel antimicrobials, making it necessary to apply effective combination therapies based on approved antibiotics.

Objectives: To quantitatively evaluate the synergistic potential of meropenem and fosfomycin against carbapenem-resistant K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!