We report a route to noncovalently latch dipolar molecules on graphene to create stable chromophore/graphene hybrids where molecular transformation can be used as an additional handle to reversibly modulate doping while retaining high mobilities. A light switchable azobenzene chromophore was tethered to the surface of graphene via π-π interactions, leading to p-doping of graphene with an hole concentration of ~5 × 10(12) cm(-2). As the molecules switch reversibly from trans to cis form the dipole moment changes, and hence the extent of doping, resulting in the modulation of hole concentration up to ~18% by alternative illumination of UV and white light. Light-driven conductance modulation and control experiments under vacuum clearly attribute the doping modulation to molecular transformations in the organic molecules. With improved sensitivities these "light-gated" transistors open up new ways to enable optical interconnects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl2032734 | DOI Listing |
Environ Sci Technol
March 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States.
Persistent free radicals (PFRs) have garnered considerable attention due to their long lifetime and high reactivity. However, the roles of photogenerated carriers in PFR formation remain underexplored. We compared and analyzed the PFR formation on hematite-SiO loaded catechol, combining experimental and theoretical investigations.
View Article and Find Full Text PDFAging Dis
March 2025
Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
Age-related alterations in the skeletal system are linked to decreased bone mass, a reduction in bone strength and density, and an increased risk of fractures and osteoporosis. Therapeutics are desired to stimulate bone regeneration and restore imbalance in the bone remodeling process. Quercetin (Qu), a naturally occurring flavonoid, induces osteogenesis; however, its solubility, stability, and bioavailability limit its therapeutic use.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Leiden Institute of Chemistry, Universiteit Leiden, PO Box 9502, Leiden 2300 RA, Netherlands.
Schottky diodes have been a fundamental component of electrical circuits for many decades, and intense research continues to this day on planar materials with increasingly exotic compounds. With the birth of nanotechnology, a paradigm shift occurred with Schottky contacts proving to be essential for enabling nanodevice inventions and increasing their performance by many orders of magnitude, particularly in the fields of piezotronics and piezoelectric energy harvesting. ZnO nanomaterials have proven to be the most popular materials in those devices as they possess high piezoelectric coefficients, high surface sensitivity, and low resistivity due to the high native n-type doping and low hole concentration.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P.R. China.
Recently, interface scattering and low mobility have significantly impeded the performance of two-dimensional (2D) P-type transistors. 2D semiconductor tellurium (Te) has garnered significant interest owing to its unique atomic chain crystal structure, which confers ultrahigh hole mobility. van der Waals heterojunction enhances transistor performance by reducing scattering at the gate-channel interface, attributed to its high-quality interface.
View Article and Find Full Text PDFRSC Adv
March 2025
Department of Chemistry, Faculty of Science, King Khalid University PO Box 9004 Abha 61413 Saudi Arabia.
Strontium phosphorus chloride (SrPCl) presents a promising option for photovoltaic (PV) applications due to its distinctive optical, electrical, and structural characteristics. This research uses density functional theory (DFT) to examine its structural stability and optoelectronic properties. The PV performance of SrPCl-based cell designs was examined, utilizing an electron transport layer (ETL) of ZnO and four different hole transport layers (HTLs): CuO, CBTS, MoO, and CuI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!