A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Concentration-gradient-dependent ion current rectification in charged conical nanopores. | LitMetric

Concentration-gradient-dependent ion current rectification in charged conical nanopores.

Langmuir

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, PR China.

Published: January 2012

Ion current rectification (ICR) in negatively charged conical nanopores is shown to be controlled by the electrolyte concentration gradient depending on the direction of ion diffusion. The degree of ICR is enhanced with the increasing forward concentration difference. An unusual rectification inversion is observed when the concentration gradient is reversely applied. A numerical simulation based on the coupled Poisson and Nernst-Planck (PNP) equations is proposed to solve the ion distribution and ionic flux in the charged and structurally asymmetric nanofluidic channel with diffusive ion flow. Simulation results qualitatively describe the diffusion-induced ICR behavior in conical nanopores suggested by the experimental data. The concentration-gradient-dependent ICR enhancement and inversion is attributed to the cooperation and competition between geometry-induced asymmetric ion transport and the diffusive ion flow. The present study improves our understanding of the ICR in asymmetric nanofluidic channels associated with the ion concentration difference and provides insight into the rectifying biological ion channels.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la203837qDOI Listing

Publication Analysis

Top Keywords

conical nanopores
12
ion current
8
current rectification
8
charged conical
8
ion
8
concentration gradient
8
concentration difference
8
asymmetric nanofluidic
8
diffusive ion
8
ion flow
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!