A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Earthworm sublethal responses to titanium dioxide nanomaterial in soil detected by ¹H NMR metabolomics. | LitMetric

Earthworm sublethal responses to titanium dioxide nanomaterial in soil detected by ¹H NMR metabolomics.

Environ Sci Technol

Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4.

Published: January 2012

¹H NMR-based metabolomics was used to examine the response of Eisenia fetida earthworms raised from juveniles for 20-23 weeks in soil spiked with either 20 or 200 mg/kg of a commercially available uncoated titanium dioxide (TiO(2)) nanomaterial (nominal diameter of 5 nm). To distinguish responses specific to particle size, soil treatments spiked with a micrometer-sized TiO(2) material (nominal diameter, <45 μm) at the same concentrations (20 and 200 mg/kg) were also included in addition to an unspiked control soil. Multivariate statistical analysis of the (1)H NMR spectra for aqueous extracts of E. fetida tissue suggested that earthworms exhibited significant changes in their metabolic profile following TiO(2) exposure for both particle sizes. The observed earthworm metabolic changes appeared to be consistent with oxidative stress, a proposed mechanism of toxicity for nanosized TiO(2). In contrast, a prior study had observed no impairment of E. fetida survival, reproduction, or growth following exposure to the same TiO(2) spiked soils. This suggests that (1)H NMR-based metabolomics provides a more sensitive measure of earthworm response to TiO(2) materials in soil and that further targeted assays to detect specific cellular or molecular level damage to earthworms caused by chronic exposure to TiO(2) are warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es202327kDOI Listing

Publication Analysis

Top Keywords

titanium dioxide
8
nominal diameter
8
earthworm sublethal
4
sublethal responses
4
responses titanium
4
dioxide nanomaterial
4
nanomaterial soil
4
soil detected
4
detected ¹h
4
¹h nmr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!