Cooperative hydrogen-bonding effects in silanediol catalysis.

Org Lett

Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.

Published: January 2012

The importance of cooperative hydrogen-bonding effects and SiOH-acidification is described for silanediol catalysis. NMR binding, X-ray, and computational studies provide support for a unique dimer resulting from silanediol self-recognition. The significance of this cooperative hydrogen-bonding is demonstrated using novel fluorinated silanediol catalysts for the addition of indoles and N,N-dimethyl-m-anisidine to trans-β-nitrostyrene.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol202971mDOI Listing

Publication Analysis

Top Keywords

cooperative hydrogen-bonding
12
hydrogen-bonding effects
8
silanediol catalysis
8
silanediol
4
effects silanediol
4
catalysis cooperative
4
effects sioh-acidification
4
sioh-acidification described
4
described silanediol
4
catalysis nmr
4

Similar Publications

Molecular Dynamics Simulation of the Compatibility Between Supercritical Carbon Dioxide and Coating Resins Assisted by Co-Solvents.

Materials (Basel)

December 2024

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Institute of Environmental Science, Fudan University, Shanghai 200433, China.

The use of supercritical carbon dioxide (ScCO) as a replacement for volatile organic solvents in coatings has the potential to reduce air pollution. This paper presents the findings of a molecular dynamics simulation study investigating the dissolution behavior of polyvinylidene fluoride (PVDF) in ScCO assisted by five co-solvents. On the basis of solubility parameters, interaction binding energy, and radial distribution functions, the impacts of temperature, pressure, and co-solvents on the compatibility of ScCO and PVDF were investigated at the microscopic level.

View Article and Find Full Text PDF

Cooperativity between H-bonding interactions in networks is a fundamental aspect of solvation and self-assembly in molecular systems. The interaction of a series of bisphenols, which make an intramolecular H-bond between the two hydroxyl groups, and quinuclidine was used to quantify cooperativity in three-component networks. The presence of the intramolecular H-bond in the bisphenols was established by using H NMR spectroscopy in solution and X-ray crystallography in the solid state.

View Article and Find Full Text PDF

Cellulose is one of the most abundant biopolymers in nature. Despite being the subject of research in various fields, it is not as famous as chitosan in catalyst design. Herein, a novel thiourea-functionalized cellulose (CTU-6) was synthesized as a robust hydrogen bonding catalyst with the degree of substitution (DS) of 0.

View Article and Find Full Text PDF

Secondary interactions, such as hydrogen bonding or phase separation, can enhance the stability of dynamic covalent materials without compromising on desired dynamic properties. Here, we investigate the combination of multiple secondary interactions in dynamic covalent materials based on acylsemicarbazides (ASCs), with the aim of achieving tunable material properties. The effects of different ASC substituents on the dynamic covalent and hydrogen bonding capabilities were investigated in a small molecule study using a combined experimental and theoretical approach, and revealed the presence of cooperative hydrogen-bonding interactions in 2 directions in one of the derivatives.

View Article and Find Full Text PDF

The catalytic mechanisms of enzymes can be phylogenetically mapped corresponding to their catalytic structures. This mapping effectively elucidates the diversity of enzyme catalytic mechanisms and the emergence of new enzymatic activities within enzyme superfamilies. The haloacid dehalogenase (HAD) superfamily serves as an exemplary model system for comprehending the co-evolution of catalytic structures and mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!