Download full-text PDF

Source
http://dx.doi.org/10.1021/ja00226a051DOI Listing

Publication Analysis

Top Keywords

organometallic chemical
4
chemical vapor
4
vapor deposition
4
deposition iii/v
4
iii/v compound
4
compound semiconductors
4
semiconductors novel
4
novel organometallic
4
organometallic precursors
4
organometallic
2

Similar Publications

Chemodivergent, enantio- and regioselective couplings of alkynes, aldehydes and silanes enabled by nickel/N-heterocyclic carbene catalysis.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.

View Article and Find Full Text PDF

Single-atom heterogeneous catalysts (SACs) are potential, recoverable alternatives to soluble organometallic complexes for cross-coupling reactions in fine-chemical synthesis. When developing SACs for these applications, it is often expected that the need for ligands, which are essential for organometallic catalysts, can be bypassed. Contrary to that, ligands remain almost always required for palladium atoms stabilized on commonly used functionalized carbon and carbon nitride supports, as the catalysts otherwise show limited activity.

View Article and Find Full Text PDF

Large-Area Transfer of Nanometer-Thin C Films.

ACS Nano

January 2025

School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.

Fullerenes, with well-defined molecular structures and high scalability, hold promise as fundamental building blocks for creating a variety of carbon materials. The fabrication and transfer of large-area films with precisely controlled thicknesses and morphologies on desired surfaces are crucial for designing and developing fullerene-based materials and devices. In this work, we present strategies for solid-state transferring C molecular nanometer-thin films, with dimensions of centimeters in lateral size and thicknesses controlled in the range of 1-20 nm, onto various substrates.

View Article and Find Full Text PDF

Domino cascade reactions, which can construct multiple bonds in one pot, are efficient methods to synthesize N-heterocycles and other useful skeletons. Herein, we report an expedient synthesis of polysubstituted benzo[][1,5]naphthyridine via Mn(III)-mediated C-C bond cleavage of cyclopropanols. These reactions were initiated by addition of β-carbonyl radicals, generated from cyclopropyl alcohols in the presence of Mn(III), to 2-(2-isocyanophenyl)acetonitriles to give quinolin-3-amines, which went through intramolecular cyclizations and dehydrogenation to give the final products.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the development of a new type of rigid, three-dimensional polymers known as stepladder polymers, utilizing spirodihydroquinoline structures.
  • These polymers are created through a reaction facilitated by a scandium catalyst that activates specific chemical bonds, allowing for the formation of complex structures from quinoline and alkyne compounds.
  • The resulting polymers have increased thermal stability and porosity after undergoing a treatment that adds a methyl group to their nitrogen-containing functional groups.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!