Enzyme reactions in nanoporous, picoliter volume containers.

Anal Chem

Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, Knoxville, Tennessee 37996, United States.

Published: January 2012

Advancements in nanoscale fabrication allow creation of small-volume reaction containers that can facilitate the screening and characterization of enzymes. A porous, ∼19 pL volume vessel has been used in this work to carry out enzyme reactions under varying substrate concentrations. Assessment of small-molecule and green fluorescent protein diffusion from the vessels indicates that pore sizes on the order of 10 nm can be obtained, allowing capture of proteins and diffusive exchange of small molecules. Glucose oxidase and horseradish peroxidase can be contained in these structures and diffusively fed with a solution containing glucose and the fluorogenic substrate amplex red through the engineered nanoscale pore structure. Fluorescent microscopy was used to monitor the reaction, which was carried out under microfluidic control. Kinetic characteristics of the enzyme (K(m) and V(max)) were evaluated and compared with results from conventional scale reactions. These picoliter, nanoporous containers can facilitate quick determination of enzyme kinetics in microfluidic systems without the requirement of surface tethering and can be used for applications in drug discovery, clinical diagnostics, and high-throughput screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264690PMC
http://dx.doi.org/10.1021/ac202726nDOI Listing

Publication Analysis

Top Keywords

enzyme reactions
8
containers facilitate
8
enzyme
4
reactions nanoporous
4
nanoporous picoliter
4
picoliter volume
4
volume containers
4
containers advancements
4
advancements nanoscale
4
nanoscale fabrication
4

Similar Publications

A retrospective analysis of medications associated with pityriasis rosea reported in the FDA adverse events reporting system.

Arch Dermatol Res

January 2025

Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1150 NW 14th Street, Miami, FL, 33136, USA.

Pityriasis rosea (PR) is an acute exanthematous disease with an uncertain physiopathology, increasingly recognized as potentially drug induced. This study aims to investigate medication triggers associated with PR by analyzing cases reported in the FDA Adverse Event Reporting System (FAERS) database. A retrospective review of 343 PR cases reported in the FAERS database from January 1, 1998, to March 31, 2024, was conducted.

View Article and Find Full Text PDF

A fluorescent aptasensor was developed based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification (NESA) to detect the oligomeric form of ß-amyolid peptide (AβO) in cerebrospinal fluid. The hairpin DNA probe (HP) was specifically designed to recognize AβO. When AβO is present in the sensing system, it induces an HP conformational switch and triggers the NESA reaction.

View Article and Find Full Text PDF

An innovative colorimetric sensing strategy was developed for the detection of glucose by the integration of glucose aptamer, glucose oxidase (GOx), and horseradish peroxidase (HRP), termed aptamer proximal enzyme cascade reactions (APECR). In the presence of glucose, aptamer binding enables GOx to catalyze glucose oxidation into HO efficiently. Subsequently, the adjacent HRP catalyzes the oxidation of the peroxidase substrate, 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), utilizing the generated HO, resulting in a distinct color change.

View Article and Find Full Text PDF

Protection of Enzymes Against Heat Inactivation by Enzyme-Polymer Conjugates.

Macromol Rapid Commun

January 2025

State Key Lab of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.

Along with the quick advancements in enzyme technology, inactivation has emerged as the key barrier for enzymes to be fully utilized as biocatalysts. Here, a novel strategy is presented for the preservation of the enzymatic activity even after heat treatment by grafting enzymes onto the thermal responsive block copolymer via an activated ester-amine reaction. A new water-soluble activated ester monomer, acrylic polyethylene glycol (PEG) functionalized 3-fluoro-4-hydroxybenzoate is synthesized.

View Article and Find Full Text PDF

Cystic Echinococcosis (CE) is a zoonotic disease caused by sensu lato. Diagnosing CE primarily relies on imaging techniques, and there is a crucial need for an objective laboratory test to enhance the diagnostic process. Today, cell-free DNAs (cfDNAs) have gained importance regarding their biomarker potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!