To directly compare the reactivity of positively charged carbon-centered aromatic σ-radicals toward methanol in solution and in the gas phase, the 2-, 3-, and 4-dehydropyridinium cations (distonic isomers of the pyridine radical cation) were generated by ultraviolet photolysis of the corresponding iodo precursors in a mixture of water and methanol at varying pH. The reaction mixtures were analyzed by using liquid chromatography/mass spectrometry. Hydrogen atom abstraction was the only reaction observed for the 3- and 4-dehydropyridinium cations (and pyridines) in solution. This also was the major reaction observed earlier in the gas phase. Depending on the pH, the hydrogen atom can be abstracted from different molecules (i.e., methanol or water) and from different sites (in methanol) by the 3- and 4-dehydropyridinium cations/pyridines in solution. In the pH range 1-4, the methyl group of methanol is the main hydrogen atom donor site for both 3- and 4-dehydropyridinium cations (just like in the gas phase). At higher pH, the hydroxyl groups of water and methanol also act as hydrogen atom donors. This finding is rationalized by a greater abundance of the unprotonated radicals that preferentially abstract hydrogen atoms from the polar hydroxyl groups. The percentage yield of hydrogen atom abstraction by these radicals was found to increase with lowering the pH in the pH range 1.0-3.2. This pH effect is rationalized by polar effects: the lower the pH, the greater the fraction of protonated (more polar) radicals in the solution. This finding is consistent with previous results obtained in the gas phase and suggests that gas-phase studies can be used to predict solution reactivity, but only as long as the same reactive species is studied in both experiments. This was found not to be the case for the 2-iodopyridinium cation. Photolysis of this precursor in solution resulted in the formation of two major addition products, 2-hydroxy- and 2-methoxypyridinium cations, in addition to the hydrogen atom abstraction product. These addition products were not observed in the earlier gas-phase studies on 2-dehydropyridinium cation. Their observation in solution is explained by the formation of another reactive intermediate, the 2-pyridylcation, upon photolysis of 2-iodopyridinium cation (and 2-iodopyridine). The same intermediate was observed in the gas phase but it was removed before examining the reactions of the desired radical, 2-dehydropyridinium cation (which cannot be done in solution).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3341853PMC
http://dx.doi.org/10.1021/ja207899jDOI Listing

Publication Analysis

Top Keywords

hydrogen atom
24
gas phase
20
4-dehydropyridinium cations
12
atom abstraction
12
solution
9
distonic isomers
8
isomers pyridine
8
pyridine radical
8
radical cation
8
water methanol
8

Similar Publications

Carbon-carbon triple bond cleavage and reconstitution to achieve aryl amidation using nitrous acid esters.

Nat Commun

January 2025

School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, PR China.

C-C bond cleavage and recombination provide an efficient strategy for the modification and reconstruction of molecule structures. Herein, we present a method for achieving amidation of aryl C(sp)-H bond through the cleavage and recombination of C-C triple bond with the involvement of nitrous acid esters. This method marks the instance of precise and controlled stepwise cleavage of C-C triple bond, offering a fresh perspective for the cleavage of such bonds.

View Article and Find Full Text PDF

Lewis Base-Enhanced C-H Bond Functionalization Mediated by a Diiron Imido Complex.

Inorg Chem

January 2025

Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.

Herein, we investigate the effects of ligand design on the nuclearity and reactivity of metal-ligand multiply bonded (MLMB) complexes to access an exclusively bimetallic reaction pathway for C-H bond functionalization. To this end, the diiron alkoxide [Fe(Dbf)] () was treated with 3,5-bis(trifluoromethyl)phenyl azide to access the diiron imido complex [Fe(Dbf)(μ-NCHF)] () that promotes hydrogen atom abstraction (HAA) from a variety of C-H and O-H bond containing substrates. A diiron bis(amide) complex [Fe(Dbf)(μ-NHCHF)(NHCHF)] () was generated, prompting the isolation of the analogous bridging amide terminal alkoxide [Fe(Dbf)(μ-NHCHF)(OCH)] () and the asymmetric pyridine-bound diiron imido [Fe(Dbf)(μ-NCHF)(NCH)] ().

View Article and Find Full Text PDF

X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...

View Article and Find Full Text PDF

Electrocatalytic CO reduction into high-value multicarbon products offers a sustainable approach to closing the anthropogenic carbon cycle and contributing to carbon neutrality, particularly when renewable electricity is used to power the reaction. However, the lack of efficient and durable electrocatalysts with high selectivity for multicarbons severely hinders the practical application of this promising technology. Herein, a nanoporous defective AuCu single-atom alloy (De-AuCu SAA) catalyst is developed through facile low-temperature thermal reduction in hydrogen and a subsequent dealloying process, which shows high selectivity toward ethylene (CH), with a Faradaic efficiency of 52% at the current density of 252 mA cm under a potential of -1.

View Article and Find Full Text PDF

Predicting reaction barriers for arbitrary configurations based on only a limited set of density functional theory (DFT) calculations would render the design of catalysts or the simulation of reactions within complex materials highly efficient. We here propose Gaussian process regression (GPR) as a method of choice if DFT calculations are limited to hundreds or thousands of barrier calculations. For the case of hydrogen atom transfer in proteins, an important reaction in chemistry and biology, we obtain a mean absolute error of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!