Free-standing arrays of isolated TiO2 nanotubes through supercritical fluid drying.

Chemphyschem

Materials & Manufacturing Directorate, Air Force Research Laboratory, 2941 Hobson Way, Wright-Patterson Air Force Base, OH 45433, USA.

Published: January 2012

A common complication in fabricating arrays of TiO(2) nanotubes is that they agglomerate into tightly packed bundles during the inevitable solvent evaporation step. This problem is particularly acute for template-fabricated TiO(2) nanotubes, as the geometric tunability of this technique enables relatively large inter-pore spacings or, from another perspective, more space for lateral displacement. Our work showed that agglomeration results from the surface tension forces that are present as the ambient solvent is evaporated from the nanotube film. Herein, we report a processing and fabrication approach that utilizes supercritical fluid drying (CO(2)) to prepare arrays of template-fabricated TiO(2) nanotubes that are free-standing and spatially isolated. This approach could be beneficial to many emerging technologies, such as solid-state dye-sensitized solar cells and vertically-oriented carbon nanotube electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201100633DOI Listing

Publication Analysis

Top Keywords

tio2 nanotubes
16
supercritical fluid
8
fluid drying
8
template-fabricated tio2
8
free-standing arrays
4
arrays isolated
4
tio2
4
isolated tio2
4
nanotubes
4
nanotubes supercritical
4

Similar Publications

The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO) and vanadium pentoxide (VO) on osteoblastic MG-63 cells grown on TiO nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study.

View Article and Find Full Text PDF

The growing modern industry has promoted the development of gas sensors for environmental monitoring and safety checks. However, the traditional chemical resistance gas sensor still has some disadvantages such as high power consumption and limited detection, mainly due to the lack of charge transfer ability of sensing materials. In this paper, an ordered UV-activated gas sensor with mesoporous ZnO/TiO nanotube composite was prepared by precisely controlling the growth of ZnO on the inner wall of TiO nanotube.

View Article and Find Full Text PDF

In single-atomic photocatalyst systems, the spatial distribution of single atoms on heterojunctions and its impact on photocatalytic processes, particularly on carrier dynamics and the CO reduction process involving multielectron reactions, remains underexplored. To address this gap, a WO/TiO nanotube heterojunction with a spatially selective distribution of Au single atoms was developed using an oxygen vacancy anchoring strategy for CO photoreduction. By anchoring Au atoms onto the WO or TiO components, a substantial number of active sites are generated and the electron transfer pathways from the heterojunction toward Au sites are formed, thereby enhancing carrier separation and concentration.

View Article and Find Full Text PDF

The high overpotential of the oxygen evolution reaction (OER) and the strong corrosion of the anode are the main problems currently faced by the zinc hydrometallurgical process. This study achieved the successful synthesis of titanium dioxide nanotubes doped by Al and V on a TC4 alloy. Subsequently, a composite electrode, TC4/AVTN-7/PbO-ZrO-CoO, was prepared utilizing composite electrodeposition.

View Article and Find Full Text PDF

This work aims to describe the effect of the surface modification of TiO nanotube (TNT) layers on Ti-6Al-4V (TiAlV) alloy by ultrathin TiO coatings prepared via Atomic Layer Deposition (ALD) on the growth of MG-63 osteoblastic cells. The TNT layers with two distinctly different inner diameters, namely ∼15 nm and ∼50 nm, were prepared via anodic oxidation of the TiAlV alloy. Flat, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!