In vivo electrophysiological and neurochemical effects of the selective 5-HT1A receptor agonist, F13640, at pre- and postsynaptic 5-HT1A receptors in the rat.

Psychopharmacology (Berl)

Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Rosselló 161, Barcelona, Spain.

Published: May 2012

Rationale: F13640 (befiradol) is a novel 5-HT(1A) receptor agonist with exceptional selectivity vs. other receptors and binding sites. It shows analgesic activity in animal models and is currently developed for human use.

Objectives: Given the potential dual role of the serotonergic system in pain, through the modulation of ascending signals in spinal cord and their emotional processing by corticolimbic areas, we examined the in vivo activity of F13640 at somatodendritic autoreceptors and postsynaptic 5-HT(1A) heteroreceptors in medial prefrontal cortex (mPFC).

Methods: In vivo single unit recordings and intracerebral microdialysis in the rat.

Results: F13640 reduced the activity of dorsal raphe serotonergic neurons at 0.2-18.2 μg kg(-1), i.v. (cumulative doses; ED(50) = 0.69 μg kg(-1), i.v.) and increased the discharge rate of 80% of mPFC pyramidal neurons in the same dose range (ED(50) = 0.62 μg kg(-1), i.v.). Both effects were reversed by the subsequent administration of the 5-HT(1A) receptor antagonist (±)WAY100635. In microdialysis studies, F13640 (0.04-0.63 mg kg(-1), i.p.) dose-dependently decreased extracellular 5-HT in the hippocampus and mPFC. Likewise, F13640 (0.01-2.5 mg kg(-1), i.p.) dose-dependently increased extracellular DA in mPFC, an effect dependent on the activation of postsynaptic 5-HT(1A) receptors in mPFC. Local perfusion of F13640 in mPFC (1-1,000 μM) also increased extracellular DA in a concentration-dependent manner. Both the systemic and local effects of F13640 were prevented by prior (±)WAY100635 administration.

Conclusions: These results indicate that, upon systemic administration, F13640 activates both 5-HT(1A) autoreceptors and postsynaptic 5-HT(1A) receptors in prefrontal cortex with a similar potency. Both activities are likely involved in the analgesic properties of the compound.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-011-2569-9DOI Listing

Publication Analysis

Top Keywords

postsynaptic 5-ht1a
16
5-ht1a receptor
12
5-ht1a receptors
12
f13640
9
5-ht1a
8
receptor agonist
8
autoreceptors postsynaptic
8
prefrontal cortex
8
increased extracellular
8
mpfc
5

Similar Publications

Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.

View Article and Find Full Text PDF

Behavioral Consequences of Hippocampal 5-HT7 Receptors Blockade in Stressed Rats.

Hippocampus

January 2025

Laboratório de Neurobiologia Do Estresse e da Depressão, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.

Serotonin (5-HT) has long been involved in response to stress and its effect may be, in part, mediated by 5-HT1a and 5-HT7 receptor subtypes in different brain structures. Both pre- and post-synaptic activation of 5-HT1a receptor, respectively, in the rat median raphe nucleus (MnRN) and hippocampus, lead to adaptation to acute inescapable stressors such as restraint and forced swim. 5-HT7 receptor (5HT7r), a stimulatory G-protein coupled receptor, has also been investigated as a possible candidate for mediating stress response.

View Article and Find Full Text PDF

Most neurons are influenced by multiple neuromodulatory inputs that converge on common effectors. Mechanisms that route these signals are key to selective neuromodulation but are poorly understood. G protein-gated inwardly rectifying K (GIRK or Kir3) channels mediate postsynaptic inhibition evoked by G protein-coupled receptors (GPCRs) that signal via inhibitory G proteins.

View Article and Find Full Text PDF

Constitutive and Conditional Epitope Tagging of Endogenous G-Protein-Coupled Receptors in .

J Neurosci

August 2024

Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095

To visualize the cellular and subcellular localization of neuromodulatory G-protein-coupled receptors in , we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for , , , , , two isoforms of , and The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show expression patterns for these receptors in female brains and that 5-HT1A and 5-HT2B localize to the mushroom bodies (MBs) and central complex, respectively, as predicted by their roles in sleep.

View Article and Find Full Text PDF

Nicotine and fluoxetine alter adolescent dopamine-mediated behaviors via 5-HT receptor activation.

Front Psychiatry

June 2024

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine (UCI), Irvine, CA, United States.

Introduction: Abuse or misuse of tobacco, e-cigarettes, or antidepressants may have serious clinical consequences during adolescence, a sensitive period during brain development when the distinct neurobiology of adolescent serotonin (5-HT) and dopamine (DA) systems create unique behavioral vulnerabilities to drugs of abuse.

Methods: Using a pharmacological approach, we modeled the behavioral and neurochemical effects of subchronic (4-day) nicotine (60µg/kg, i.v.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!