The root-knot nematode Meloidogyne incognita poses a worldwide threat to agriculture, with an increasing demand for alternative control options since most common nematicides are being withdrawn due to environmental concerns. The biocontrol potential of arbuscular mycorrhizal fungi (AMF) against plant-parasitic nematodes has been demonstrated, but the modes of action remain to be unraveled. In this study, M. incognita penetration of second-stage juveniles at 4, 8 and 12 days after inoculation was compared in tomato roots (Solanum lycopersicum cv. Marmande) pre-colonized or not by the AMF Glomus mosseae. Further life stage development of the juveniles was also observed in both control and mycorrhizal roots at 12 days, 3 weeks and 4 weeks after inoculation by means of acid fuchsin staining. Penetration was significantly lower in mycorrhizal roots, with a reduction up to 32%. Significantly lower numbers of third- and fourth-stage juveniles and females accumulated in mycorrhizal roots, at a slower rate than in control roots. The results show for the first time that G. mosseae continuously suppresses root-knot nematodes throughout their entire early infection phase of root penetration and subsequent life stage development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00572-011-0422-yDOI Listing

Publication Analysis

Top Keywords

life stage
12
stage development
12
mycorrhizal roots
12
arbuscular mycorrhizal
8
mycorrhizal fungi
8
root-knot nematodes
8
roots
5
fungi affect
4
penetration
4
affect penetration
4

Similar Publications

Phoronida is a small group of marine animals, most of which are characterized by a long larval period and complex metamorphosis. As a result of metamorphosis, their body changes so much that their true anterior and posterior ends are very close to each other, and the intestine becomes long and U-shaped. Using histology and electron microscopy, we have shown that the elongation and change in shape of the digestive tract that occurs during metamorphosis in Phoronopsis harmeri larvae is accompanied by the formation of new parts and changes in ultrastructure.

View Article and Find Full Text PDF

Programmed Transformation of Osteogenesis Microenvironment by a Multifunctional Hydrogel to Enhance Repair of Infectious Bone Defects.

Adv Sci (Weinh)

January 2025

Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China.

Repair of infectious bone defects remains a serious problem in clinical practice owing to the high risk of infection and excessive reactive oxygen species (ROS) during the early stage, and the residual bacteria and delayed Osseo integrated interface in the later stage, which jointly creates a complex and dynamic microenvironment and leads to bone non-union. The melatonin carbon dots (MCDs) possess antibacterial and osteogenesis abilities, greatly simplifying the composition of a multifunctional material. Therefore, a multifunctional hydrogel containing MCDs (GH-MCD) is developed to meet the multi-stage and complex repair needs of infectious bone injury in this study.

View Article and Find Full Text PDF

WDR74-Mediated Ribosome Biogenesis and Proteome Dynamics During Mouse Preimplantation Development.

Genes Cells

January 2025

Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.

Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.

View Article and Find Full Text PDF

Severe aortic valve stenosis poses a significant risk for the aging population, often escalating from mild symptoms to life-threatening heart failure and sudden death. Without timely intervention, this condition can lead to disastrous outcomes. The advent of transcatheter aortic valve implantation (TAVI) has gained popularity, emerging as an effective alternative for managing severe aortic stenosis (AS) in high-risk patients experiencing deterioration of previously implanted bioprosthetic surgical aortic valves (SAV), which introduces complex challenges such as device compatibility and anatomical considerations.

View Article and Find Full Text PDF

Background Maternal diabetes mellitus (DM) is a known risk factor for congenital heart diseases (CHDs), which are of significant concern to infants born to diabetic mothers. Compared to newborns born to non-diabetic mothers, infants born to diabetic mothers had a higher overall risk of developing congenital malformations. This association has a complex pathophysiology that includes genetic predispositions, metabolic abnormalities, and environmental factors during key stages of fetal development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!