The diagnosis, prevention, and treatment of many illnesses, including infectious and autoimmune diseases, would benefit from the ability to measure specific antibodies directly at the point of care. Thus motivated, we designed a wash-free, electrochemical method for the rapid, quantitative detection of specific antibodies directly in undiluted, unprocessed blood serum. Our approach employs short, contiguous polypeptide epitopes coupled to the distal end of an electrode-bound nucleic acid "scaffold" modified with a reporting methylene blue. The binding of the relevant antibody to the epitope reduces the efficiency with which the redox reporter approaches, and thus exchanges electrons with, the underlying sensor electrode, producing readily measurable change in current. To demonstrate the versatility of the approach, we fabricated a set of six such sensors, each aimed at the detection of a different monoclonal antibody. All six sensors are sensitive (subnanomolar detection limits), rapid (equilibration time constants ∼8 min), and specific (no appreciable cross reactivity with the targets of the other five). When deployed in a millimeter-scale, an 18-pixel array with each of the six sensors in triplicate support the simultaneous measurement of the concentrations of multiple antibodies in a single, submilliliter sample volume. The described sensor platform thus appears be a relatively general approach to the rapid and specific quantification of antibodies in clinical materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523736PMC
http://dx.doi.org/10.1021/ac202757cDOI Listing

Publication Analysis

Top Keywords

specific antibodies
12
wash-free electrochemical
8
detection specific
8
antibodies directly
8
specific
5
antibodies
5
electrochemical platform
4
platform quantitative
4
quantitative multiplexed
4
detection
4

Similar Publications

Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells.

View Article and Find Full Text PDF

Typical epidermodysplasia verruciformis (EV) is a rare, autosomal recessive disorder characterized by an unusual susceptibility to infection with specific skin-trophic types of human papillomavirus, principally betapapillomaviruses, and a propensity for developing malignant skin tumors in sun exposed regions. Its etiology reflects biallelic loss-of-function mutations in TMC6 (EVER1), TMC8 (EVER2) or CIB1. A TMC6-TMC8-CIB1 protein complex in the endoplasmic reticulum is hypothesized to be a restriction factor in keratinocytes for βHPV infection.

View Article and Find Full Text PDF

The Icarian flight of antibody-drug conjugates: target selection amidst complexity and tackling adverse impacts.

Protein Cell

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China.

Antibody-drug conjugates (ADCs) represent a promising class of targeted cancer therapeutics that combine the specificity of monoclonal antibodies with the potency of cytotoxic payloads. Despite their therapeutic potential, the use of ADCs faces significant challenges, including off/on-target toxicity and resistance development. This review examines the current landscape of ADC development, focusing on the critical aspects of target selection and antibody engineering.

View Article and Find Full Text PDF

Reduced function or hypomorphic variants in recombination-activating genes (RAG) 1 or 2 result in a broad clinical phenotype including common variable immunodeficiency (CVID) and even adult-onset disease. Milder RAG variants are less characterized. Here we describe the longitudinal course of a milder combined RAG deficiency in 3 of 7 siblings sharing the same RAG2 mutations over a 50-year study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!