We present an algorithm to render objects made of transparent materials with rough surfaces in real-time, under all-frequency distant illumination. Rough surfaces cause wide scattering as light enters and exits objects, which significantly complicates the rendering of such materials. We present two contributions to approximate the successive scattering events at interfaces, due to rough refraction: First, an approximation of the Bidirectional Transmittance Distribution Function (BTDF), using spherical Gaussians, suitable for real-time estimation of environment lighting using preconvolution; second, a combination of cone tracing and macrogeometry filtering to efficiently integrate the scattered rays at the exiting interface of the object. We demonstrate the quality of our approximation by comparison against stochastic ray tracing. Furthermore we propose two extensions to our method for supporting spatially varying roughness on object surfaces and local lighting for thin objects.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2011.282DOI Listing

Publication Analysis

Top Keywords

rough refraction
8
rough surfaces
8
real-time rendering
4
rough
4
rendering rough
4
refraction algorithm
4
algorithm render
4
render objects
4
objects transparent
4
transparent materials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!