The Bloch-Siegert (B-S) method of B ₁⁺ mapping has been shown to be fast and accurate, yet has high SAR and moderately long TE. These limitations can lengthen scan times and incur signal loss due to B(0) inhomogeneity, particularly at high field. The B-S method relies on applying a band-limited off-resonant B-S radiofrequency pulse to induce a B ₁⁺-dependent frequency-shift for resonant spins. A method for optimizing the B-S radiofrequency pulse is presented here, which maximizes B-S B ₁⁺ measurement sensitivity for a given SAR and T(2) . A 4-ms optimized pulse is shown to have 35% less SAR compared with the conventional 6-ms Fermi pulse while still improving B ₁⁺ map angle-to-noise ratio by 22%. The optimized pulse performance is validated both in phantom and in vivo brain imaging at 7 T.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297726 | PMC |
http://dx.doi.org/10.1002/mrm.23271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!