Imaging in vivo astrocyte/endothelial cell interactions at the blood-brain barrier.

Methods Mol Biol

Department of Biomedical Sciences, College of Osteopathic Medicine and Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA.

Published: March 2012

The goal of this chapter is to highlight methods used to demonstrate in vivo changes in astrocyte expression at the blood-brain barrier (BBB). Loss of BBB integrity is seen in many acute and chronic disease conditions. However, despite the importance of the BBB to homeostasis and correct functioning of the CNS, the nature of factors responsible for the induction and maintenance of BBB properties in development and the adult remains unclear. We have studied the role of astrocytes in modulating BBB integrity in two in vivo models using a gliotoxin (3-chloropropanediol), and under hypoxic stress. 3-chloropropanediol-induced astrocytic loss within the inferior colliculus leads to loss of endothelial tight junction protein expression and loss of BBB integrity. As glial fibrillary acidic protein (GFAP)-immunopositive astrocytes repopulated the lesion, tight junction protein expression returned to paracellular domains and BBB integrity was restored. Under hypoxic conditions, increased GFAP expression was seen with changes in tight junction protein expression and loss of BBB integrity. These studies suggest a critical role for glial/endothelial interactions in regulating BBB integrity in health and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-452-0_34DOI Listing

Publication Analysis

Top Keywords

bbb integrity
24
loss bbb
12
tight junction
12
junction protein
12
protein expression
12
bbb
9
blood-brain barrier
8
expression loss
8
integrity
6
expression
5

Similar Publications

The Mechanism of Bovis Culus Sativus Protecting BBB Damage in Stroke: Insights from Network Pharmacology, Bioinformatics, and Experiments.

J Ethnopharmacol

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137 , P.R. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China. Electronic address:

Ethnopharmacological Relevance: Bovis calculus (BC) has a medicinal history of over 2,000 years in treating stroke in China. Bovis Culus Sativus (BCS) has similar pharmacological effects to BC. Due to the scarcity of BC, BCS is often used as a substitute for BC in clinical practice for treating stroke in traditional Chinese medicine.

View Article and Find Full Text PDF

Following traumatic brain injury (TBI), inhibition of the Na-K-Cl cotransporter1 (NKCC1) has been observed to alleviate damage to the blood-brain barrier (BBB). However, the underlying mechanism for this effect remains unclear. This study aimed to investigate the mechanisms by which inhibiting the NKCC1 attenuates disruption of BBB integrity in TBI.

View Article and Find Full Text PDF

Background: The non-saponin (NS) fraction is an important active component of with multifunctional pharmacological activities including neuroprotective, immune regulatory, anti-inflammatory, and antioxidant effects. However, the effects of NSs on multiple sclerosis (MS), a chronic and autoimmune demyelinating disorder, have not yet been demonstrated.

Purpose: and Methods: The goal of the present study was to demonstrate the pharmacological actions of NSs on movement dysfunctions and the related mechanisms of action using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

View Article and Find Full Text PDF

Diabetes Mellitus Impairs Blood-Brain Barrier Integrality and Microglial Reactivity.

J Biophotonics

January 2025

Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.

Diabetes mellitus (DM), a chronic metabolic disorder that adversely affects the blood-brain barrier (BBB) and microglial function in the central nervous system (CNS), contributing to neuronal damage and neurodegenerative diseases. However, the underlying molecular mechanisms linking diabetes to BBB dysfunction and microglial dysregulation remain poorly understood. Here, we assessed the impacts of diabetes on BBB and microglial reactivity and investigated its mechanisms.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!