Preparation of mixed glial cultures from postnatal rat brain.

Methods Mol Biol

Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, CA, USA.

Published: March 2012

We describe a method to prepare postnatal rat brain primary cell cultures composed of astrocytes, oligodendrocytes, and microglia. After 1 week in vitro, the mixed glial cell cultures are free of neurons, meningeal cells and fibroblasts. We developed a simple procedure to selectively harvest enriched populations of each of the three major glial cell types. Because these cells are at a progenitor/immature stage, each can be further cultured separately in serum or serum-free media to yield large quantities of the desired glial cell subpopulations with a high degree of purity in the range of 96-99%. These cell culture models have been used extensively for performing biochemical, molecular, and pharmacological studies using standard assays and obtain sound quantitative data. These studies have given us insights into the development, properties, and functions of rat and mouse glial cells in vitro. The findings have largely been validated and extended in animal models over the last 3 decades. Since this method has been cited in more than 2,500 research papers, the data obtained across laboratories can be compared more readily.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-452-0_4DOI Listing

Publication Analysis

Top Keywords

glial cell
12
mixed glial
8
postnatal rat
8
rat brain
8
cell cultures
8
glial
5
cell
5
preparation mixed
4
glial cultures
4
cultures postnatal
4

Similar Publications

Healthy brain aging involves changes in both brain structure and function, including alterations in cellular composition and microstructure across brain regions. Unlike diffusion-weighted MRI (dMRI), diffusion-weighted MR spectroscopy (dMRS) can assess cell-type specific microstructural changes, providing indirect information on both cell composition and microstructure through the quantification and interpretation of metabolites' diffusion properties. This work investigates age-related changes in the higher-order diffusion properties of total N-Acetyl-aspartate (neuronal biomarker), total choline (glial biomarker), and total creatine (both neuronal and glial biomarker) beyond the classical apparent diffusion coefficient in cerebral and cerebellar gray matter of healthy human brain.

View Article and Find Full Text PDF

Peripheral nerve injury repair has always been a research concern of scientists. At the tissue level, axonal regeneration has become a research spotlight in peripheral nerve repair. Through transplantation of autologous nerve grafts or other emerging biomaterials functional recovery after facial nerve injury is not ideal in clinical scenarios.

View Article and Find Full Text PDF

Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.

View Article and Find Full Text PDF

It is well recognized that type II Diabetes (T2D) and overweight/obesity are established risk factors for stroke, worsening also their consequences. However, the underlying mechanisms by which these disorders aggravate outcomes are not yet clear limiting the therapeutic opportunities. To fill this gap, we characterized, for the first time, the effects of T2D and obesity on the brain repair mechanisms occurring 7 days after stroke, notably glial scarring.

View Article and Find Full Text PDF

Drug-resistant epilepsy in pediatric patients is associated with neuroinflammation and neurodegeneration. Vitamin D 25-OH exerts neuroprotective effects, while glial cell line- derived neurotrophic factor (GDNF) and the proinflammatory cytokine interleukin-1β (IL-1β) are implicated in the mechanisms of neuroinflammation and epileptogenesis. The aim of this study was to investigate the relationship between vitamin D 25-OH, IL-1β, and GDNF levels with seizure severity and frequency in children with drug-resistant epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!