Andisol in farmland located in Hokkaido, Japan, is known to actively flux nitrous oxide (N(2)O) during the spring to summer seasons. Using a culturing system which mimics farm soils, nitrous oxide (N(2)O) emission potentials of the soils or soil microorganisms were investigated. A total of thirty-three soil samples from the farmland showed high N(2)O production potential, of which the maximum level of N(2)O emission was 3.69 μg per ml of the cultured medium per day (ml(-1) d(-1)) in the assay system. However, only three eubacteria (Leptothrix sp., Paenibacillus sp., and Streptomyces sp.) were isolated as culturable N(2)O emitters among a total of 92 bacterial isolates and 2 fungi obtained from the assayed soil suspensions. N(2)O production from all the isolated N(2)O emitters was more active within a weakly acidic region (pH 4.5-5.0) than neutral regions. However, unlike N(2)O emitters isolated from tropical peat soils, they did not respond to supplemental 0.5% sucrose. In the acetylene inhibition assay for the evaluation of complete denitrification, Leptothrix sp. P3-15D and Streptomyces sp. M2-0C indicated that these culturable N(2)O emitters are not effective denitrifiers but weak N(2)O emitters in the Andisol. Conversely, Rhodococcus sp. that was isolated from the Andisol collected in another season using a KNO(3)-enriched plate, showed 3.2-fold higher N(2)O emission with 10% C(2) H(2). Instead of the culturable bacteria, it is probable that the N(2)O emitters in viable but non-culturable (VBNC) state or obligately anaerobic denitrifiers are the major contributors to N(2)O emission from the vitric Andisol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jobm.201100241 | DOI Listing |
Water Res
December 2024
School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China. Electronic address:
Coupling of iron-carbon can form a mixotrophic denitrification and is regarded as a promising solution for purifying nitrate-rich agricultural runoff. However, its prevalence and efficacy of the synergistic augmentation of nitrogen elimination and net NO sinks remain crucial knowledge gaps in ecological ditches (eco-ditches). Here, we investigated the underlying variability mechanisms by implementing sponge iron (sFe)-coupled Iris hexagonus (IH)- or Myriophyllum aquaticum (MA)-derived biochar produced via microwave-assisted (MW) pyrolysis and conventional pyrolysis.
View Article and Find Full Text PDFSci Total Environ
December 2024
Division of Environment and Sustainability, The Hong Kong University of Science and Technology,Hong Kong Special Administrative Region of China. Electronic address:
Sci Total Environ
December 2024
Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic.
Tree stems exchange greenhouse gases with the atmosphere but the magnitude, variability and drivers of these fluxes remain poorly understood. Here, we report stem fluxes of carbon dioxide (CO), methane (CH) and nitrous oxide (NO) in a boreal riparian forest, and investigate their spatiotemporal variability and ecosystem level importance. For two years, we measured CO and CH fluxes on a monthly basis in 14 spruces (Picea abies) and 14 birches (Betula pendula) growing near a headwater stream affected by historic ditching.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Microengineering (IEM), Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab), Maladière 71b, 2000 Neuchâtel, Switzerland.
Full-area passivating contacts based on SiO/poly-Si stacks are key for the new generation of industrial silicon solar cells substituting the passivated emitter and rear cell (PERC) technology. Demonstrating a potential efficiency increase of 1 to 2% compared to PERC, the utilization of n-type wafers with an n-type contact at the back and a p-type diffused boron emitter has become the industry standard in 2024. In this work, variations of this technology are explored, considering p-type passivating contacts on p-type Si wafers formed via a rapid thermal processing (RTP) step.
View Article and Find Full Text PDFJ Environ Manage
August 2024
Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India. Electronic address:
The use of fixed emission factors (EFs), combined with insufficient temporal distribution, leads to substantial uncertainties in current emission inventories for India, the world's second-largest producer and consumer of synthetic N-fertilizers. Our study aimed to improve the NH and NO emission estimates by utilizing crop-specific district-level activity data and refined EFs tailored to Indian conditions. In this study, a comprehensive NH and NO emission inventory (EI) is methodically developed at 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!