Objective: A challenge in using human embryonic stem cells (hESCs) as the source of surrogate β cells is the establishment of methods that could effectively direct their differentiation into functional β cells. The aim of this study was to assess the effect of NANOG gene suppression in differentiating hESCs as a mean of increasing the efficiency with which endoderm-derived pancreatic cells could be generated.
Methods: A homogenous cell population with stable suppression of NANOG was generated in hESC ENVY line using plasmid-based siRNA approach. Pancreatic differentiation was undertaken according to the ontology-based in vitro selection protocol and followed by transplantation into immunodeficiency mice to mature in vivo.
Results: We observed up-regulation of definitive endoderm genes, which expand the role of NANOG in blocking definitive endoderm differentiation. The ontology-based differentiation protocol resulted in increased expression of markers essential for pancreatic epithelium development. Transplantation of these cells further revealed a homogenous pancreatic exocrine-like morphology that stained positively for amylase.
Conclusions: The suppression of NANOG displayed an effective differentiation toward endoderm and pancreatic progenitors. Investigation of the factors required for endocrine formation combined with a prolonged in vivo culturing could be further used to increase the ratio of endocrine-exocrine cells fate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MPA.0b013e31822362e4 | DOI Listing |
J Ethnopharmacol
January 2025
Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China. Electronic address:
Ethnopharmacological Relevance: Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer, featuring a high proportion of cancer stem cells (CSCs) and the poorest clinical outcomes. Taraxacum mongolicum Hand. -Mazz.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan.
The molecular link between stress and carcinogenesis and the positive outcomes of stress intervention in cancer therapy have recently been well documented. Cancer stem cells (CSCs) facilitate cancer malignancy, drug resistance, and relapse and, hence, have emerged as a new therapeutic target. Here, we aimed to investigate the effect of three previously described antistress compounds (triethylene glycol, TEG; Withanone, Wi-N, and Withaferin A, Wi-A) on the stemness and differentiation characteristics of cancer cells.
View Article and Find Full Text PDFTzu Chi Med J
September 2024
School of Medicine, Tzu Chi University, Hualien, Taiwan.
Objectives: Gastric cancer (GC) is one of the most malignant tumors. Mounting studies highlighted gastric cancer stem cells (GCSCs) were responsible for the failure of treatment due to recurrence and drug resistance of advanced GC. However, targeted therapy against GCSC for improving GC prognosis suffered from lack of suitable models and molecular targets in terms of personalized medicine.
View Article and Find Full Text PDFFront Genome Ed
January 2025
State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China.
Primordial germ cells (PGCs) play a crucial role in transmitting genetic information to the next-generation. In chickens, genetically edited PGCs can be propagated and subsequently transplanted into recipient embryos to produce offspring with desired genetic traits. However, during early embryogenesis, the effects of external conditions on PGC migration through the vascular system to the gonads have yet to be explored, which may affect the efficiency of preparing gene-edited chickens.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea.
Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!