Ribgrass mosaic virus (RMV) has severely decreased the production and lowered quality of Chinese cabbage co-infected with Turnip mosaic virus (63.4%) in Korea. The complete genome sequence of RMV isolated from Brassica rapa ssp. pekinensis was determined. The full genome consisted of 6,304 nucleotides and showed sequence identities of 91.5-94.2% with the corresponding genome of other RMV strains. Full-length cDNA of RMV-Br was amplified by RT-PCR with a 5'-end primer harboring a T7 promoter sequence and a 3'-end RMV specific primer. Subsequently, the full-length cDNA was cloned into plasmid vectors. Capped transcripts synthesized from the cDNA clone were highly infectious and caused characteristic symptoms in B. rapa ssp. pekinensis and several indicator plants, similar to wild type RMV. Since there has not been found RMV resistant Chinese cabbage yet and the virus has been prevalent already throughout the natural fields of Korea, the identification of full sequence and development of infectious clone would help developing breeding program for RMV resistant crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11262-011-0694-5 | DOI Listing |
Virology
January 2025
College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China. Electronic address:
Plant viruses represent a major threat to agriculture, affecting a wide range of crops with substantial economic losses. This study presented a novel strategy for managing plant viral diseases through the development an attenuated vaccine utilizing cucumber mosaic virus (CMV) for virus-induced gene silencing (VIGS) targeting susceptibility gene. TOBAMOVIRUS MULTIPLICATION 2A (TOM2A) gene was identified as a critical factor that enhances susceptibility to TMV infection in plants.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
The Institute of Plant Sciences and Genetics, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
Background: Plant breeding research heavily relies on wild species, which harbor valuable traits for modern agriculture. This work employed a new introgression population derived from Solanum pennellii (LA5240), a wild tomato native to Peru, composed of 1,900 genotyped backcross inbred lines (BILs_BC2S6) in the tomato inbreds LEA and TOP cultivated genetic backgrounds. This Peruvian accession was found resistant to the most threatening disease of tomatoes today, caused by the tobamovirus tomato brown rugose fruit virus (ToBRFV).
View Article and Find Full Text PDFPlant Genome
March 2025
Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.
View Article and Find Full Text PDFTherapeutic monoclonal antibodies (mAbs) against SARS-CoV-2 become obsolete as spike substitutions reduce antibody binding. To induce antibodies against conserved receptor-binding domain (RBD) regions for protection against SARS-CoV-2 variants of concern and zoonotic sarbecoviruses, we developed mosaic-8b RBD-nanoparticles presenting eight sarbecovirus RBDs arranged randomly on a 60-mer nanoparticle. Mosaic-8b immunizations protected animals from challenges from viruses whose RBDs were matched or mismatched to those on nanoparticles.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
Forty-four samples of garlic plants showing virus-like symptoms were collected, during the growing season (2021-2022) from different locations in Qassim province, Saudi Arabia. These samples were analyzed by ELISA against the important Allium allexiviruses including garlic virus A (GarV-A), garlic virus B (GarV-B), garlic virus C (GarV-C), and Shallot virus X (ShVX). The obtained results showed that 22/44 (50%) samples were found to be infected with one of the tested viruses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!