Concentric and eccentric muscle contractions have distinct differences in their neuromuscular and neurophysiologic characteristics. However, although many evidences regarding the features of these types of muscle contraction have emerged, there have been few neuroimaging studies to compare the two types of contractions. Therefore, we investigated whether cortical activity associated with eccentric contraction of the wrist extensors differed from that of concentric contraction, using functional MRI (fMRI). Fifteen right-handed healthy subjects were enrolled in this study. During 4 repeating blocks of eccentric and concentric muscle contraction paradigms, the brain was scanned with fMRI. The differences in the BOLD signal intensities during the performance of eccentric and concentric exercise were compared in the predetermined regions of interest. Our findings revealed that many cortical areas associated with motor performance were activated, including the primary motor area, the inferior parietal lobe, the pre-supplementary area (pre-SMA), the anterior cingulate cortex, the prefrontal area, and the cerebellum. In addition, lower signal intensities were seen in the right primary motor cortex and right cerebellum during eccentric contractions compared with concentric contractions, whereas higher signal intensities were detected in other cortical areas during eccentric contractions. In the study, we demonstrated that eccentric and concentric muscle contractions induced quite different patterns of cortical activity respectively. These findings might be attributed to different strategy of neuro-motor processing and a higher level of cognitive demand for the performance of motor task with a higher degree of difficulty such as that required during eccentric contractions in comparison of concentric contractions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/NRE-2011-0701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!