The carbon monoxide (CO) sensitivity of a mixed-potential-type yttria-stabilized zirconia (YSZ)-based tubular-type sensor utilizing a ZnCr(2)O(4) sensing electrode (SE) was tuned by the addition of different precious metal nanoparticles (Ag, Au, Ir, Pd, Pt, Ru and Rh; 1 wt % each) into the sensing layer. After measuring the electromotive force (emf) response of the fabricated SEs to 100 ppm of CO against a Pt/air-reference electrode (RE), the ZnCr(2)O(4)-Au nanoparticle composite electrode (ZnCr(2)O(4)(+Au)-SE) was found to give the highest response to CO. A linear dependence on the logarithm of CO concentration in the range of 20-800 ppm at an operational temperature of 550 °C under humid conditions (5 vol % water vapor) was observed. From the characterization of the ZnCr(2)O(4)(+Au)-SE, we can conclude that the engineered high response toward CO originated from the specific properties of submicrometer sized Au particles, formed via the coalescence of nanosized Au particles located on ZnCr(2)O(4) grains, during the calcining process at 1100 °C for 2 h. These particles augmented the catalytic activities of the gas-phase CO oxidation reaction in the SE layer, as well as to the anodic reaction of CO at the interface; while suppressing the cathodic reaction of O(2) at the interface. In addition, the response of the ZnCr(2)O(4)(+Au)-SE sensor toward 100 ppm of CO gradually increased throughout the 10 days of operation, and plateaued for the remainder of the month that the sensor was examined. Correlations between SEM observations and the CO sensing characteristics of the present sensor were suggestive that the sensitivity was mostly affected by the morphology of the Au particles and their catalytic activities, which were in close proximity to the ZnCr(2)O(4) grains. Furthermore, by measuring the potential difference (emf) between the ZnCr(2)O(4)(+Au) and a ZnCr(2)O(4) electrode, sensitivities to typical exhaust component gases other than CO were found to be negligible at 550 °C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la203935w | DOI Listing |
Food Sci Nutr
January 2025
Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch Islamic Azad University Semnan Iran.
Dental caries is a highly prevalent chronic condition globally. In recent years, scientists have turned to natural compounds such as plant extracts as an alternative to address concerns related to biofilm-mediated disease transmission, increasing bacterial resistance, and the adverse impacts of antibiotics. Consequently, this study investigated the antimicrobial properties of ethanolic, hydroethanolic, and aqueous extracts of L.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China. Electronic address:
Background: Trimethylamine (TMA) is a colorless, volatile gas with a strong irritating odor. Prolonged exposure to a certain amount of TMA can cause symptoms such as dizziness, nausea and difficulty breathing, and may even be life-threatening. Therefore, effective detection of TMA is crucial.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan.
Heavy metal and nuclide contamination pose increasing threats to the environment and public health. In this study, a comparative analysis was conducted on the bioremediation capabilities of the halophilic fungus Engyodontium album (E. album) and the non-halophilic fungus Trichoderma reesei (T.
View Article and Find Full Text PDFMolecules
December 2024
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein 2050, South Africa.
The demand for reliable, cost-effective, room temperature gas sensors with high sensitivity, selectivity, and short response times is rising, particularly for environmental monitoring, biomedicine, and agriculture. In this study, corncob waste-derived activated carbon (ACC) was combined with CuO nanoparticles and polyvinyl alcohol (PVA) to fabricate ACC/PVA/CuO composites with CuO loadings of 5, 10, and 15 wt.%.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
Background: The in vitro propagation of halophytes is innovative perspective for sustainable agriculture, conservation of natural plants and essential raw materials for industry due to increasing soil salinization and decreasing freshwater availability. Sarcocornia fruticosa, a halophytic plant, may hold promise for biosaline production systems and achieve bioactive products. Understanding the salt tolerance mechanisms of halophytes through elicitors can enhance the production of secondary metabolites, such as phenolics and flavonoids, under saline environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!