Meadowfoam (Limnanthes alba L.) is a herbaceous winter-spring annual grown as a commercial oilseed crop. The meal remaining after oil extraction from the seed contains up to 4% of the glucosinolate glucolimnanthin. Degradation of glucolimnanthin yields toxic breakdown products, and therefore the meal may have potential in the management of soilborne pathogens. To maximize the pest-suppressive potential of meadowfoam seed meal, it would be beneficial to know the toxicity of individual glucolimnanthin degradation products against specific soilborne pathogens. Meloidogyne hapla second-stage juveniles (J2) and Pythium irregulare and Verticillium dahliae mycelial cultures were exposed to glucolimnanthin as well as its degradation products. Glucolimnanthin and its degradation product, 2-(3-methoxyphenyl)acetamide, were not toxic to any of the soilborne pathogens at concentrations up to 1.0 mg/mL. Two other degradation products, 2-(3-methoxymethyl)ethanethioamide and 3-methoxyphenylacetonitrile, were toxic to M. hapla and P. irregulare but not V. dahliae. The predominant enzyme degradation product, 3-methoxybenzyl isothiocyanate, was the most toxic compound against all of the soilborne pathogens, with M. hapla being the most sensitive with EC(50) values (0.0025 ± 0.0001 to 0.0027 ± 0.0001 mg/mL) 20-40 times lower than estimated EC(50) mortality values generated for P. irregulare and V. dahliae (0.05 and 0.1 mg/mL, respectively). The potential exists to manipulate meadowfoam seed meal to promote the production of specific degradation products. The conversion of glucolimnanthin into its corresponding isothiocyanate should optimize the biopesticidal properties of meadowfoam seed meal against M. hapla, P. irregulare, and V. dahliae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215540 | PMC |
http://dx.doi.org/10.1021/jf203913p | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!