Synovitis is considered as one of the factors associated with the pathogenesis of osteoarthritis (OA). There is currently a significant amount of research linking estrogen deficiencies with the development of OA in estrogen-deficient women, including postmenopausal women; however, the exact etiology remains unclear. Various neuropeptides, such as substance P (SP) and calcitonin gene-related peptide (CGRP), have been shown to contribute to synovitis in OA joints, and the influence of estrogen on the expressions of SP and CGRP in the synovium of OA joints has been noted. After ovariectomy (OVX) followed by estradiol (E2) replacement, 24 female rats were divided into three groups: OVX group, OVX + E2 replacement group (E2 group), and a sham group. All rats underwent transection of the anterior cruciate ligament at the same time. After 30 days, the histological findings of knee joints by hematoxylin-eosin staining and immunofluorescence staining of protein gene product 9.5 (pan-neuronal marker), SP, and CGRP were compared among experimental groups. The degree of synovitis in the OVX group was higher than in the E2 and sham groups. No significant differences in the density of protein gene product 9.5-immunoreactive nerve fibers were observed among the three experimental groups, but the density of SP- or CGRP-immunoreactive nerve fibers in the OVX group was significantly higher than in the E2 and sham groups. These findings suggest that estrogen partly regulates intraarticular neurogenic inflammation in OA joints by modulating the expressions of neuropeptides in the synovium.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03008207.2011.628059DOI Listing

Publication Analysis

Top Keywords

ovx group
12
intraarticular neurogenic
8
neurogenic inflammation
8
anterior cruciate
8
cruciate ligament
8
protein gene
8
gene product
8
experimental groups
8
group higher
8
higher sham
8

Similar Publications

Objective: Modified Zuo Gui Wan (MZGW) was a combination of Zuo Gui Wan and red yeast rice used for treating osteoporosis (OP), but its mechanism remains unclear. We aimed to validate the anti-OP effect of MZGW and explore its underlying mechanism.

Methods: An ovariectomy (OVX) rat model in vivo and a RANKL-induced osteoclasts (OCs) model in vitro were established.

View Article and Find Full Text PDF

Background: Osteoporosis is a pervasive bone metabolic disorder characterized by the progressive degeneration of bone microstructure. Osteoclasts are playing a pivotal role in bone remodeling and resorption. Consequently, modulating osteoclast activity, particularly curbing their overactivation, has become a crucial strategy in clinical treatments.

View Article and Find Full Text PDF

Osteoporosis is a systemic, progressive bone disease that causes metabolic disorders. Previous study identified the preventive effects of hydrolyzed egg yolk peptide (YPEP) on osteoporosis. However, the underlying antiosteoporosis mechanism remains unclear.

View Article and Find Full Text PDF

Osteoporosis (OP) is the most prevalent metabolic bone disease and an important postmenopausal consequence. This study aimed to investigate the effects of morin, a flavonoid with beneficial properties, on ovariectomy-induced OP. Animals were ovariectomized (OVX) and treated with different doses of morin (15, 30, and 45 mg/kg/day) or estradiol (10 μg/kg/day) for 10 weeks by gavage.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) can cause blood pressure (BP) elevation in estrogen-deficient, post-menopausal women; however, the underlying mechanisms are not well understood. In this study, the aortic involvement and its underlying mechanisms that contribute to the BP elevation in estrogen-deficient, RA condition were identified. Ovariectomy was performed to create a state of estrogen deficiency and RA was then induced in ovariectomized rats by using incomplete Freund's adjuvant and immune-mediated collagen type-II.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!