This study aimed to identify receptors mediating sphingosine-1-phosphate (S1P)-induced vasoconstriction in the normotensive and chronic hypoxia-induced hypertensive rat pulmonary circulation. In isolated perfused lungs from normoxic rats, infusion of S1P caused a sustained vasoconstriction, which was not reduced by combinational pretreatment with the dual S1P(1 and 3) receptor antagonist VPC23019 and the S1P(2) receptor antagonist JTE013. The S1P(4) receptor agonists phytosphingosine-1-phospate and VPC23153, but not the dual S1P(1 and 3) receptor agonist VPC24191, caused dose-dependent vasoconstrictions. In hypertensive lungs from chronically hypoxic rats, the vasoconstrictor responses to S1P and VPC23153 were markedly enhanced. The S1P(4) receptor agonist VPC 23153 caused contraction of isolated pulmonary but not of renal or mesenteric arteries from chronically hypoxic rats. S1P(4) receptor protein as well as mRNA were detected in both normotensive and hypertensive pulmonary arteries. In contrast to what has been reported in the systemic circulation and mouse lung, our findings raise the possibility that S1P(4) receptor plays a significant role in S1P-induced vasoconstriction in the normotensive and hypertensive rat pulmonary circulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224432PMC
http://dx.doi.org/10.4103/2045-8932.87309DOI Listing

Publication Analysis

Top Keywords

s1p4 receptor
20
s1p-induced vasoconstriction
12
vasoconstriction normotensive
12
normotensive hypertensive
12
hypertensive rat
12
rat pulmonary
8
pulmonary circulation
8
dual s1p1
8
s1p1 receptor
8
receptor antagonist
8

Similar Publications

S1PR3-driven positive feedback loop sustains STAT3 activation and keratinocyte hyperproliferation in psoriasis.

Cell Death Dis

January 2025

State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093, Nanjing, P.R. China.

Psoriasis is a chronic inflammatory skin disorder characterized by hyperproliferation of keratinocytes and persistent inflammation. Although persistent activation of signal transducer and activator of transcription 3 (STAT3) is implicated in its pathogenesis, the mechanisms underlying the sustained STAT3 activation remain poorly understood. Here, we identify sphingosine-1-phosphate receptor 3 (S1PR3) as a critical regulator of STAT3 activation and psoriasis pathogenesis, orchestrating a self-amplifying circuit that sustains keratinocyte hyperproliferation and chronic inflammation.

View Article and Find Full Text PDF

An overview of small-molecule agents for the treatment of psoriasis.

Bioorg Med Chem

January 2025

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China. Electronic address:

Psoriasis is a prevalent, chronic inflammatory disease characterized by abnormal skin plaques. To date, physical therapy, topical therapy, systemic therapy and biologic drugs are the most commonly employed strategies for treating psoriasis. Recently, many agents have advanced to clinical trials, and some anti-psoriasis drugs have been approved, including antibody drugs and small-molecule drugs.

View Article and Find Full Text PDF

Cardiomyocyte S1PR1 promotes cardiac regeneration via AKT/mTORC1 signaling pathway.

Theranostics

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.

Lower vertebrates and some neonatal mammals are known to possess the ability to regenerate cardiomyocyte and fully recover after heart injuries within a limited period. Understanding the molecular mechanisms of heart regeneration and exploring new ways to enhance cardiac regeneration hold significant promise for therapeutic intervention of heart failure. Sphingosine 1-phospahte receptor 1 (S1PR1) is highly expressed in cardiomyocytes and plays a crucial role in heart development and pathological cardiac remodeling.

View Article and Find Full Text PDF

The sphingosine-1-phosphate-5 (S1P) receptor is one of the five membrane G protein-coupled receptors that are activated by the lysophospholipid, sphingosine-1-phosphate, resulting in regulation of many cellular processes. S1P receptors are located on oligodendrocytes and are proposed to influence oligodendrocyte physiology. Understanding S1P modulation during processes such as remyelination could have potential applications for demyelinating CNS disorders such as multiple sclerosis (MS).

View Article and Find Full Text PDF

Assessment of a 6-arylaminobenzamide lead derivative as a potential core scaffold for S1P positron emission tomography radiotracer development.

Bioorg Med Chem

January 2025

University/BHF Centre for Cardiovascular Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ UK; Edinburgh Imaging, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ UK. Electronic address:

Sphingosine-1-phosphate-5 receptors (S1P) are predominantly expressed in oligodendrocytes and as a result have been proposed as an important target in Multiple Sclerosis (MS). Selective S1P radiotracers could enable in vivo positron emission tomography (PET) imaging of oligodendrocytes activity. Here we report the synthesis, radiolabelling and first preclinical evaluation of the pharmacokinetics and binding properties of a lead 6-arylaminobenzamide derivative, 6-(mesitylamino)-2-methoxy-3-methylbenzamide (also named as TEFM180), as a potential core scaffold for development of novel S1P PET radiotracers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!