latelet-derived growth factor alpha-receptor (PDGFαR) mediated signaling plays a key role in the development of glial cells of the central nervous system. In vivo and in vitro studies show that PDGFαR is actively expressed in proliferative and motile oligodendrocyte type-2 astrocyte (O-2A) glial progenitor cells. However, PDGFαR expression is barely detectable in mature glial cells. The exact mechanism underlying the loss of PDGFαR expression is unknown. In this study, we employed a rat brain-derived O-2A glial progenitor cell line, CG4 as a culture model to investigate signals capable of inhibiting PDGFαR gene expression. PDGFαR mRNA levels decreased significantly as CG4 cells differentiated into both oligodendrocyte and astrocyte lineages. We showed that inhibition of PDGFαR expression was promoted by prostaglandin E2 via protein kinase A activation. Both cAMP analogs (db-cAMP and 8'bromo-cAMP) and adenylate cyclase activator (forskolin) were potent suppressors of PDGFαR expression in CG4 cells. This inhibitory effect resulted from an increased destabilization of PDGFαR mRNA instead of a decreased PDGFαR gene transcription. Importantly, db-cAMP failed to reduce PDGFαR mRNA levels in several PDGFαR over-expressing human glioma cell lines. Together, these results suggest that cAMP-dependent pathway played a key regulatory role in controlling PDGFαR mRNA levels during normal glial development, and that a breakdown in the cross talk between cAMP and PDGF pathways may underlie the uncontrolled proliferation and immature differentiation state in the glial tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228579 | PMC |
Microb Cell Fact
January 2025
Human Microbiology Institute, New York, NY, 10014, USA.
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.
View Article and Find Full Text PDFJ Transl Med
January 2025
Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!