We determined that signal transducer and activator of transcription 3 (Stat3) is tyrosine phosphorylated in 37% of primary breast tumors and 63% of paired metastatic axillary lymph nodes. Examination of the distribution of tyrosine phosphorylated (pStat3) in primary tumors revealed heterogenous expression within the tumor with the highest levels found in cells on the edge of tumors with relatively lower levels in the central portion of tumors. In order to determine Stat3 target genes that may be involved in migration and metastasis, we identified those genes that were differentially expressed in primary breast cancer samples as a function of pStat3 levels. In addition to known Stat3 transcriptional targets (Twist, Snail, Tenascin-C and IL-8), we identified ENPP2 as a novel Stat3 regulated gene, which encodes autotaxin (ATX), a secreted lysophospholipase which mediates mammary tumorigenesis and cancer cell migration. A positive correlation between nuclear pStat3 and ATX was determined by immunohistochemical analysis of primary breast cancer samples and matched axillary lymph nodes and in several breast cancer derived cell lines. Inhibition of pStat3 or reducing Stat3 expression led to a decrease in ATX levels and cell migration. An association between Stat3 and the ATX promoter, which contains a number of putative Stat3 binding sites, was determined by chromatin immunoprecipitation. These observations suggest that activated Stat3 may regulate the migration of breast cancer cells through the regulation of ATX.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225372 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027851 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!