Physiology faculty members at a wide range of institutions (2-yr colleges to medical schools) were surveyed to determine what core principles of physiology they want their students to understand. From the results of the first survey, 15 core principles were described. In a second survey, respondents were asked to rank order these 15 core principles and, independently, to identify the three most important for their students to understand. The five most important core principles were "cell membrane," "homeostasis," "cell-to-cell communications," "interdependence," and "flow down gradients." We then "unpacked" the flow down gradients core principle into the component ideas of which it is comprised. This unpacking was sent to respondents who were asked to identify the importance of each of the component ideas. Respondents strongly agreed with the importance of the component ideas we had identified. We will be using the responses to our surveys as we begin the development of a conceptual assessment of physiology instrument (i.e., a concept inventory).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/advan.00004.2011 | DOI Listing |
Trials
January 2025
Department of Cardiology, University Hospital of Wales, Cardiff, UK.
Randomized controlled trials (RCTs) are the cornerstone of modern evidence-based medicine. They are considered essential to establish definitive evidence of efficacy and safety for new drugs, and whenever possible they should also be the preferred method for investigating new high-risk medical devices. Well-designed studies robustly inform clinical practice guidelines and decision-making, but administrative obstacles have made it increasingly difficult to conduct informative RCTs.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Rehabilitation, Physical Therapy Science & Sports, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands.
Introduction: While principles of neuroplasticity and motor learning emphasise the potential of high dosage of physical rehabilitation in children and adolescents with acquired brain injury (ABI) during the subacute phase, we lack empirical evidence to demonstrate its impact in terms of meaningful outcomes. Clinical research is needed to investigate adequate dosage of physical rehabilitation and its effects on outcomes with reliable and validated outcome measurements. In this study we will investigate the feasibility of a highly intensive physical rehabilitation intervention and outcomes with reliable and valid outcome measurements.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Electromagnetic pollution protection and military stealth technologies underscore the urgent need to develop efficient electromagnetic wave-absorbing materials (EWAMs). Traditional EWAMs suffer from single absorption loss mechanisms, poor impedance matching, and weak reflection loss. To date, combining dielectric loss with magnetic loss in EWAMs have proven to be an effective approach to enhancing electromagnetic absorption performance.
View Article and Find Full Text PDFLearning in dynamic environments requires animals to not only associate cues with outcomes but also to determine cue salience, which modulates how quickly related associations are updated. While dopamine (DA) in the nucleus accumbens core (NAcc) has been implicated in learning associations, the mechanisms of salience are less understood. Here, we tested the hypothesis that acetylcholine (ACh) in the NAcc encodes cue salience.
View Article and Find Full Text PDFUnlabelled: Predictive coding (PC) hypothesizes that the brain computes internal models of predicted events and that unpredicted stimuli are signaled with prediction errors that feed forward. We tested this hypothesis using a visual oddball task. A repetitive sequence interrupted by a novel stimulus is a "local" oddball.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!